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BigMed, launched in 2017 and funded by the The Research 
Council of Norway, was the first major publicly funded precision 
medicine initiative of its kind in Norway. Hosted by Oslo 
University Hospital, the project brought together partners from 
clinical organisations, academia, patient organisations, and 
industry to address barriers to the implementation of precision 
medicine and pave the way for big data analytics in healthcare. 

The 2018 BigMed position paper, Big data management for the 
precise treatment of three patient groups 1, which identified 
the initial barriers to clinical implementation of precision 
medicine, was the starting point for this project. This report 
summarizes the footprint and knowledge developed during the 
project, and points to more detailed BigMed resources where 
available. Participants from this unique cross sector and cross 
competence project have contributed through discussions, 
deliverables and knowledge summaries, resulting in a report 
that includes perspectives, reflections and wisdom from a broad 
consortium. The content covers both visions and future goals, 
as well as practical examples of solutions made in the project. 

Throughout the project, knowledge has been documented 
through podcasts episodes, seminars, articles and 
technical reports. These are referenced where relevant 
in this report asfurther materials and are available on: 

BigMed.no

About this report

https://bigmed.no/
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After almost four years of development, experimentation, and 
knowledge building on clinical implementation of precision medicine, 
we conclude BigMed with this final report, Reflections on the clinical 
implementation of precision medicine. The report summarizes 
experiences and reflections from the project and is meant to be a guide 
for subsequent projects on the implementation of precision medicine.

It has been an exciting and rewarding journey from the first visions and 
thoughts we had about BigMed in 2016 to the results we see materialise 
today. It has been an honor to work and discuss with leading researchers 
and centres both nationally and internationally. We wish to thank all 
the partners in the project: patient organisations, university faculties, 
industry, and hospital departments for their input and participation.

BigMed has had the privilege of conducting a dialogue with several 
important stakeholders throughout the project period, including the 
Norwegian Ministry of Health and Care Services, the Directorate  
of Health, and Directorate of eHealth. 

By the autumn 2020 the legal department of the Ministry of Health 
and Care Services suggested changes in the Health personnel Act 
and the Heath records Act, based in large part on BigMed experiences, 
that will facilitate the use of patient information to develop an 
infrastructure for precision medicine. During the coming years we 
believe further revisions of the legal system and digital structures will 
continue to emerge and make precision medicine a clinical reality. 

We look forward to further discussions, and hope you enjoy the read 
regardless of whether you are a decision maker, practitioner, expert,  
or simply share our interest in the clinical implementation  
of precision medicine.

Four exciting years

Erik Fosse, Oslo University Hospital 
Project owner

Vibeke Binz Vallevik, DNV 
Project manager



9



10



11

The Norwegian Cancer Society joined the BigMed 
project to help equip our healthcare system to 
realize the benefits of personalised medicine.

In cancer, personalised medicine represents a shift in 
thinking that requires new international cooperation and 
data sharing to overcome the limits of small databases 
in Norway. Facilitating this data sharing across national 
borders, health trusts, and even within levels in the 
health service, is demanding. We cannot each sit on our 
separate islands to meet these new needs; infrastructure, 
regulatory conditions, and financing mechanisms 
need to change, and we must all work together.

In a world where knowledge develops rapidly, artificial 
intelligence technology can assist doctors by comparing 
data from a specific patient to the thousands of other 
patients with the same profile and guide them towards more 
effective treatments. This technology provides opportunities 
that did not exist a few years ago. In the BigMed project, 
we wanted to find out how we could enable this for routine 
use. Through the project, we identified the requirements 
with respect to legislation, funding, and data collection, and 
were able to give recommendations on what is needed.

Health data privacy is a major concern for us and our 
patients. Precision medicine requires sharing data but 
there are concerns about what will happen if a person’s 
personal health data goes astray. It is therefore important 
that every system that manages personal health data 

for precision medicine also takes privacy and personal 
integrity very seriously. The benefits of using someone’s 
health data must be balanced against their privacy.

The vast majority of cancer patients we have talked to 
want and expect their data to be helpful to others even 
if it can’t be used to help themselves. We advocate for 
systems that allow ethical data sharing for this purpose 
while protecting against private and public players who 
want to exploit the potential in health data. If we don’t 
enact best practices to protect health data now we risk 
losing the trust needed to implement precision medicine.

We envision a Norwegian healthcare system that is at 
the global forefront of treating cancer with precision 
medicine. We are therefore very proud and happy that 
the BigMed project is helping to point the way forward 
for cancer patients, towards a life without cancer.

The value of health data  
for the patient

Ingrid Stenstadvold Ross 
Generalsekretær i Kreftforeningen
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The BigMed project was funded by The Research Council 
of Norway (RCN) as an ICT lighthouse project to address 
the barriers to clinical implementation of precision medicine 
and pave the way for big data analytics. The consortium, 
hosted by Oslo University Hospital, was a cooperation 
of more than 20 partners from industry, academia, and 
the clinic. In the four years BigMed operated, the multi-
disciplinary teams developed solutions on infrastructure, 
quality assurance, data sharing and clinical decision support 
based on needs identified through three clinical areas: rare 
diseases, sudden cardiac death, and colorectal cancer.

In developing a framework for addressing different 
types of implementation barriers, BigMed considered 
legal issues, organisational and governance issues, ICT 
infrastructure, as well as the life cycle of secondary use 
of data through data capture, analysis, and application. 

The project found data is a resource that is seldom 
reused for clinical decision support. Clinical genomics is 
an exception and serves as a good example of how data 
can be reused to support clinical decisions. This can be a 
model for future development of other areas, to see how 
data can be used for patient similarity analysis and to speed 
up knowledge development to the benefit of our patients. 

BigMed contributed to reducing the genetic analysis 
time for critically ill newborns at (OUH) from 8 weeks to 5 
days by developing tools to support the implementation 
and automatisation of high throughput sequencing 
pipelines. To monitor quality, BigMed explored

quality control needs and specific tools, and developed 
and implemented solutions for sharing of genomic data.
The legal aspects of sharing genomic data were interpreted 
and clarified to make implementation possible. 

The project developed patient similarity tools for colorectal 
cancer, building on data from external sources like the 
Cancer Registry of Norway. These analytic tools supporting 
clinical decisions were coupled with genomic reporting tools 
in a dashboard to gather all relevant patient information in a 
timeline. This clinical case demonstrates the need for data 
mobility and the benefit of reusing data for clinical decisions.

Based on the case of sudden cardiac death and the 
need for early identification of patients at risk, we 
demonstrated the use of Natural language processing 
(NLP) to pull relevant information from Electronic 
Health Records (EHR) in order to populate analysis 
tools and automate risk estimation. Synthetic data 
proved successful for the first phase of training tools. 

Our experiences reveal a need to develop strategies 
on how best to use data and what infrastructure needs 
to be in place. Data must be captured in formats that 
allow for reuse. Raw data should be saved as well, as 
a lot of value may get lost in the translation from raw 
data to structured variables. NLP will provide a useful 
tool to interpret the information hidden in clinical text, 
yet need to be developed in one area at a time. 

Data must be allowed to flow between systems 
to allow for the successful development and 

Executive 
summary
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implementation of tools and processes that support a precision medicine 
approach. This flow will be facilitated by defined standards, APIs, and 
suitable open platforms. There is a significant technology debt in the 
existing infrastructure that needs to be addressed as we move forward. 

Adoption of precision medicine is best executed with an iterative approach and 
incremental changes. This is best accomplished through an agile management 
approach and establishment of a clear path from innovation to implementation, 
rather than a hierarchical decision structure. This innovation ecosystem requires 
the hospitals and technology providers to work together towards a common goal. 

New models for clinical studies are needed to adapt to the precision 
medicine paradigm, and health economic models must be revised 
to reflect the individual rather than a group approach. 

The current healthcare regulations are fragmented. Essentially, the main rule 
is that data should not be reused. The many necessary exceptions to this rule 
make it a difficult landscape to operate in for both healthcare professionals and 
researchers. A holistic approach to regulating how data can be reused in a safe 
and balanced way would support development and benefit the patients rather 
than create barriers. Clinical decision support (CDS) tools powered by Artificial 
Intelligence (AI) will be regulated under the EU Medical Device Regulation (MDR) 
and In-Vitro Diagnostic Regulation (IVDR), yet more supporting systems for 
safe use are needed. The need for ICT competence near the clinic will increase, 
as diagnostics move towards more of a multi competence team process.

Moving forward, more specialised initiatives that follow BigMed will continue 
developing solutions and bringing important discussion topics to the stakeholders 
and the public. The right setup for allowing incremental changes in our system 
will allow us to continue working towards our common goal of implementing 
precision medicine in the healthcare system for the benefit of our patients.

«Essentially, the main rule is that 
data should not be reused. The 
many necessary exceptions to  
this rule make it a difficult [legal] 
landscape to operate in…»
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1. The paradigm of 
precision medicine

Precision medicine promises many opportunities and 
benefits to healthcare yet clinical implementation has  
proven challenging. Realising these benefits will require  
us to simultaneously rethink several areas of existing 
clinical practice. 

Medical doctors have always sought to “find the right 
treatment for the right person at the right time“ 2,  
however finding the right treatment is often a frustrating  
process of trial and error. Rapidly increasing knowledge 
of the biological characteristics of individual people 
and diseases is making it possible for doctors to use 
precision medicine to individually tailor treatment 
and find that right treatment the first time. 

The implementation of precision medicine is still in its 
infancy and the real health economic ratios of different 
initiatives are still being discussed. More experience 
and data are needed before coming to a conclusion. 

1.1 WHAT IS PRECISION MEDICINE?
Treatment plans have traditionally relied on data 
and statistics from studies on large clinical trials. 
Traditional studies are good for recommending 
treatments that are likely to work for a large part 
of the population. Precision medicine represents 
a paradigm shift to more dynamic, individualised 
treatments and health risk assessments based on a 
patient’s specific clinical and biological information.

Precision medicine 

Precision medicine or personalised medicine 
refers to the tailoring of medical treatment to the 
individual characteristics of each patient.3 
Detailed patient information – from biomarkers 
like genetic variants, to social attributes – are 
used to inform customised medical decisions, 
practices, or products. 

 
In precision medicine, healthcare professionals form 
multidisciplinary teams to evaluate and analyse large 
amounts of data from many different sources in order  
to make the best clinical decision.

The falling cost of diagnostic technologies has made it 
possible to quickly collect, store, and analyse patient data. 
Molecular markers and genetic analysis are the most 
common target for analysis in precision medicine using new 
technologies such as artificial intelligence. Together, these 
enable more accurate diagnosis and tailored treatment.

Additional new methods and tools are still urgently 
needed. BigMed contributes to the development of 
these methods, software and tools, with an emphasis 
on efficient reuse of gathered knowledge. 

1



Five major categories of barriers were identified through 
clinical cases and presented in the 2018 BigMed report: 
Technological, legal and regulatory, financial and political, 
organisational, and competence and knowledge. 

Technological barriers: There is a need for solutions 
that support flexible storage, capture, transfer, 
sharing and use of primary clinical data for analysis, 
and facilitating direct communication between 
ICT systems and various sources of data.

Legal and Regulatory barriers: Regulations that address 
research activities and healthcare services separately, 
inconsistent privacy rules, and laws that do not facilitate 
precision medicine research, make it difficult to harness 
the value of data through sharing and secondary use.

Barriers to clinical 
implementation

Financial and Political barriers: It is difficult to 
find consensus when driving disruptive change. 
Inefficient incentives for innovation and a lack of 
evidence to support the overall financial benefits are 
hindering precision medicine implementation.

Organisational barriers: The complex structure of healthcare 
organisations make them adverse to change, reluctant to 
share information, and sceptical of industry involvement. 

Competence and Knowledge barriers: There is a lack of 
required expertise (data scientists and bioinformaticians)
within the healthcare system, and a lack of cross 
disciplinary understanding between clinicians, regulators, 
and data scientists that is necessary to use data for 
clinical decision making. Patients and clinicians are 
often unaware of the benefits of precision medicine. 

Financial  
and political

Barriers Competence  
and knowledge

Legal and 
regulatory

Organisational

Technological
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1.2 HOW TO MOVE FORWARD
Several building blocks are still missing before precision medicine can be 
routinely and meaningfully utilised by the Norwegian healthcare system. 

As our understanding of patients become more detailed, and treatment and 
follow up becomes more individualised, the groups of similar patients become 
smaller and smaller. Small cohorts require larger data sets for algorithms and 
clinicians to consider. Local, regional, or even national health databases may 
not contain sufficient health data on a specific phenotype. This creates a 
need for broader data exchange between hospitals, regions, and countries. 
The algorithms for achieving this exist, but the infrastructure is lacking.

As precision medicine teams grow larger and new competence and technology 
become part of the diagnostic process, the traditional boundaries between clinical 
practice and research are shifting. Capturing and analysing data generated in standard 
clinical practice, outside of clinical trials, is making it feasible for every patient to 
become their own research project. A broader legal definition of the term “healthcare 
worker” will be needed to properly understand and regulate this emerging practice.

Precision medicine challenges our existing legislation, medical decision systems, 
infrastructure, and organisational structures. Our medical system – including methods 
of prioritising healthcare, technology approval, and drug pricing – will need to be 
updated. 

Experience from the BigMed project show that we will benefit from addressing all of 
these issues simultaneously by developing iterative solutions to clinical problems as we 
learn and mature. 

1
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2. BigMed’s framework for 
addressing the barriers

BigMed designed a framework for implementing precision medicine based on a 
core of clinical data management, supported by information and communications 
technology (ICT)-infrastructure, and capped at either end by a legal & ethical framework 
and by an organisational and governance framework. This pill-shaped architecture 
is designed to overcome the barriers to implementing precision medicine.

Precision medicine will require clinical data to be used in new ways – from capture, 
through analysis, to the application at the point of care. ICT-infrastructure needs to 
support this and meet the needs for data flow and sharing of data across institutions. 
Legal & ethical frameworks need to allow for the new ways of using data while 
also providing effective regulation and ensuring patient protection. Organisational 
frameworks and governance, including embedded financial incentives, need to be in 
place to fully capitalize on the opportunities that arise from precision medicine. 

2.1 THE CORE: DATA AND INFRASTRUCTURE
We have developed, tested, and implemented solutions for sharing data between 
organisations, harmonizing and structuring data, automatic extractions, processing data, 
and ensuring data quality. We focused our investigation on three model clinical categories: 
rare disease, sudden cardiac death, and colorectal cancer. The primary barriers to effective 

Figure 1. The pill-shaped framework BigMed applied for implementation of precision medicine.
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data use were formatting and sharing. We addressed 
these by improving the data capture and processing 
system by developing a new identification system using 
natural language processing algorithms and a new 
analysis pipeline parameter setup. In addition, we created 
a digital consent to prioritise variants solution, replacing 
paper forms with electronic ones to supply structured 
data that will help quickly prioritise variants in the lab.

As our understanding of the complex nature of data 
processing matured, new barriers were continuously 
identified. The initial project plan had to be reworked 
several times to adjust to a reality where access to 
data proved even more difficult than expected.

2.2 LEGAL AND ETHICAL FRAMEWORK
BigMed identified an ongoing need for legal and ethical 
clarifications. Specifically, the definition of anonymity in 
the GDPR is ambiguous in the context of patient data 
for precision medicine. The BigMed legal team, with their 
network of experts from all relevant stakeholders, were 
involved throughout the development process. They 
identified and sought to solve these issues as they arose. 

Legal barriers and proposed solutions have been lifted 
to the decision maker level, resulting in proposed 
changes in the law in 2020 4 regarding accessing patient 
data for reuse and sharing of genomic variants. 

2.3 ORGANISATIONAL FRAMEWORK 
AND GOVERNANCE

Working with multi-disciplinary teams and stakeholders, 
BigMed identified several organisational barriers to 
precision medicine. Organisational frameworks will 
need updating to bridge the gap between research 
and implementation. This includes improving data 
sharing workflows, financial incentives, and encouraging 
collaboration between researchers, clinicians, and 
industry. Through this new framework, BigMed 
has been able to develop new technologies and 
proposed several organisational improvements.

2.4 FRAMEWORK DEVELOPMENT
BigMed has addressed each component of this architecture 
in parallel. The project tested solutions for moving new 
developments from the lab to clinical practice. The 

need for a near-production innovation platform was 
identified early in the process, and a BigMed innovation 
zone was created based on these identified needs. This 
zone enables the providers of infrastructure to test new 
services before rolling these out on a large scale.

A natural, necessary part of BigMed has been collaboration 
and the discussion forums. As the project draws to a close, 
a few areas have been identified as valuable for continued 
discussions. This includes a necessity for continuous 
improvement of IT competence and understanding of 
clinical needs, through discussions between the clinic 
and the infrastructure and ICT service support, as well 
as development of the legal competence network for 
precision medicine, which has been extended to the 
Nordics and formally established as “Nordic Permed Law”.

The following chapters reflect BigMed’s experience in 
precision medicine. The chapters are organised by the 
components of this architecture. They cover both practical 
outputs from the project and visions for future directions and 
collaborations where concrete solutions are still impeded. 

Additional BigMed material

BigMed report
 − Big data management for the precise  
treatment of three patient groups

Recorded webinars 
 − BigMed-konferansen 2020:  
Veien til presisjonsmedisin 

2

https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://vimeo.com/469672581/59bc331c8f
https://vimeo.com/469672581/59bc331c8f
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3. Data capture, analysis, 
and application – systematic 
use of health data

  
Effective use and analysis of clinical patient data increases 
our body of medical knowledge and help meet the needs of 
clinical quality assurance and decision support. 
 
BigMed studied how clinical patient data was used in three 
model clinical fields: rare disease, sudden cardiac death, 
and colorectal cancer. We began at the end of the data 
process by identifying the relevant clinical applications and 
worked backwards to find the needs of the corresponding 
supporting analysis. We used these to guide our discussions 
on best practices of data capture. The analysis revealed 
several barriers to effective data use. 
 
First, raw data was often either not stored, not accessible, 
not suitably formatted, or there were no available means 
to analyse it. Most of the patient data captured in the 
Electronic Health Record (EHR) is meant for communication 
between clinicians, billing, and record keeping. Little of it 
is in a format that can be easily used for other purposes. 
Clinical data that was reported by clinicians for secondary 

use was limited to small sets of structured parameters sent 
to disease specific registers. The format of definitions and 
data here was generally selected for tertiary value (national 
summary statistics) rather than clinical or research purposes. 
 
Second, raw data from medical devices or specialised 
analysis was often not archived at all. It was stored in formats 
inappropriate for reuse, or only represented by summary 
data within proprietary reports.  
 
Finally, there was no ability to analyse data within the 
boundaries of the clinical systems. Without effective 
communication tools, data analysis was more of a 
one-way street rather than a fast feedback loop.

Molecular diagnostics and genomics data are key 
components of precision medicine and examples of 
highly sensitive data. After benchmarking exercises 
showed that differences in pipeline parameter setup could 
lead to differences in clinical results, BigMed made it a 
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priority to focus on ensuring that clinical decisions are 
made on solid foundations. Data sharing is important for 
quality assurance. Hence, solutions for safe and effective 
sharing of genomic data were developed in the project.

Before using real world patient data as a foundation for 
decision support tools, clinicians and developers must 
understand the bias in health data. While we support 
structuring certain information for reuse and analysis, we also 
firmly believe that original clinical text remains the best form 
for capturing complex and context-dependent information 
and conveying it between caregivers. NLP can be a useful 
tool for unlocking this complex information moving forward. 

Within this chapter, sections address reflections and 
learnings from different contributors to the project. 

Sections in chapter 3

3.1  A need for a strategy on data  
capture and use

3.2  Extracting information from clinical  
text with natural language processing

3.3  Biases and pitfalls in using real  
world health data

3.4  Access to genomics data through  
sharing across organisations

3.5  Standardisation and quality assurance  
of molecular diagnostics

Related BigMed material

BigMed reports
 − Neural classification of Norwegian radiology reports: using NLP to detect findings in CT-scans of children 
 − Patient similarity networks for precision medicine 
 − Clinical decision Support Software; Regulatory landscape in Europe from May 26th 2020
 − Cancer Predisposition Sequencing Reporter (CPSR): a flexible variant report 
engine for high-throughput germline screening in cancer 

 − Accuracy and efficiency of germline variant calling pipelines for human genome data 
 − Building a Norwegian Lexical Resource for Medical Entity Recognition 
 − Suggesting Reasonable Phenotypes to Clinicians 
 − Drivers in rapid genetic diagnostics for rare diseases in infants 
 − Personal Cancer Genome Reporter: variant interpretation report for precision oncology 
 − Iterative development of family history annotation guidelines using a synthetic corpus of clinical text 
 − Clinical sequencing: Regulatory frameworks and quality assurance for NGS-based diagnostics 
 − Big data management for the precise treatment of three patient groups 

Podcasts 
 − Precision Medicine into Patient Treatment
 − Personalised Cancer Treatment
 − Genomics and Datasharing
 − Machine Learning on Text from Medical Records

Recorded webinars 
 − NLP in Health – What is Possible, Useful and Allowed? 
 − BigMed-konferansen 2020: Veien til presisjonsmedisin 

An overview of all material from BigMed is available at bigmed.no
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3.1 A NEED FOR A STRATEGY FOR DATA CAPTURE AND USE 

Pål H. Brekke (Oslo University Hospital), contributions by Serena Elizabeth Marshall (DNV), 
Bjørn Næss (DIPS), Vebjørn Arntzen (Oslo University Hospital), Vibeke Binz Vallevik (DNV) 

Establishing a focused strategy that can capitalize on the potential value of 
real-world clinical data is becoming increasingly urgent. Such a strategy should 
outline how the data value chain, from origin to use, will be supported. The 
inherent nature of clinical work requires trust in the data used. Therefore, data 
quality, availability, integrity and interoperability must be defined. Different 
stakeholder needs for data use and sharing should be covered. 

3.1.1 Using real world data in precision medicine
In the data driven future of precision medicine, real world data is a resource 
for decision support when deciding on treatment for both the current and 
future patients. Real world data is also helpful for creating new knowledge, 
improving processes and assuring quality of clinical practice.

Currently, knowledge generated through clinical research projects follows an 
unappealing timeline. As illustrated in Figure 2, the research project (purple 
arrow) will take a long time before possibly influencing clinical practice only 
several years after the original data was produced. In principle, integrating real 
time data in the clinic (orange arrow) should allow for faster patient benefit.

Analysing the real world data we create every day, and using the results to generate 
hypotheses or direct decisions at the organisational or clinical level, has the potential to 
increase new knowledge integration at a much faster pace. Yet, the faster pace requires 
a different approach to assuring quality. These assurance processes must address, for 
example, quality, omissions, accessibility, and trust in the origin. These needs will determine 
the data formats, storage and access requirements and ensure an alignment of priorities.

Real world data

The European Medicines Agency (EMA) defines real world data (RWD) as 
“routinely collected data relating to a patient’s health status or the delivery  
of healthcare from a variety of sources other than traditional clinical trials”.  

3.1.2 Where and how data should be stored 
Many devices used in hospitals, for example blood pressure monitors, spirometers, 
and portable ultrasound scanners, are not connected to the hospital’s IT network, and 
therefore do not capture or archive results in a centralised data storage. Data summary 
reports are more commonly prepared manually or delivered as a printout. Even for the 
perhaps most ubiquitous medical study, the electrocardiogram (ECG), the recording is 
printed and then scanned as an image rather than storing the original – and 
much smaller – digital file.  Handling printed reports has a cost in terms of extra 
administrative work, delayed information flow, and quality and information loss. 
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Figure 2. Value for patients from research (purple) vs. real world data (orange).

While preserving every piece of health information in its original format may be excessive, a 
conservationist approach could enable future diagnosis and treatment technologies. Even 
if current technology cannot yet analyse all the data flows produced by modern diagnostic 
equipment in high resolution and high volume, one should consider how the current surge 
in neural network-based machine learning and AI has facilitated big data processing beyond 
what was imagined only a decade ago. Paradigm shifts in analytic abilities are generally 
unpredictable. To paraphrase a well-known ad: Storage is cheap. Knowledge is priceless.

3.1.3 Human or machine readable clinical information
In the past few years, there has been a strong drive towards structuring EHR in order 
to optimise data for machine interpretation, arguably at the cost of human usability. 
While describing the complex biological ecosystem of a human being with simple 
categorical variables is of great use for creating statistical aggregations of larger 
datasets or for billing purposes, the simplicity of quantified classifications will inevitably 
result in valuable information being discarded. Clinical texts – the freeform notes 
clinicians write about their patients –contain not only technical data but also important 
contextual information describing uncertainty, subjective evaluations, and grey zones. 

To avoid a reductionist approach, and cater to unforeseen future data usage, we 
emphasize the value of human readable text and advocate the use of natural language 
processing (NLP) tools to bridge the gap between human and computer. 

3
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NLP tools could serve as an abstraction layer between 
clinicians’ necessary human-to-human communication 
and the analytical needs of researchers, hospitals, 
and organisations. Fit-for-purpose clinical NLP could 
enrich the human-readable text with a layer of interpreted, 
analysable data points. This would allow clinicians to 
communicate and document in their natural language, 
preserve the reasoning and contextual information in 
the EHR, and also provide a computable representation 
of health data in the background. It might even allow 
the clinician to immediately re-use machine-interpreted 
data from clinical text as input in risk calculators, 
registers, or other tools requiring structured data. 

3.2 EXTRACTING INFORMATION FROM 
CLINICAL TEXT WITH NATURAL 
LANGUAGE PROCESSING (NLP) 

Fredrik A. Dahl (Akershus University Hospital), 
contributions by Lilja Øvrelid (University of Oslo) 

Over the last decade, the state of the art for NLP has 
improved radically due to machine learning (ML) with 
deep neural networks, which can successfully represent 
the usage and meaning of single words and sentences. 
Although such systems have a long way to go before 
they can reproduce all aspects of human communication, 
programs such as GLUE and Super-GLUE 5 are making 
impressive progress in a wide array of specific language 
understanding. There is a great need for software that 
can process clinical text intelligently by finding key pieces 
of information and summarizing the content of clinical 
notes, and NLP based on ML fits the bill perfectly.

3.2.1 Data access and legal issues 
By definition, medical records contain sensitive 
information. Privacy issues must be handled carefully.
Clinical free-text is even more challenging than structured 
data in this respect, since each sentence may contain 
sensitive information that is virtually impossible to 
anonymize completely for analytical purposes.

From our experience, the Norwegian ethics committee 
system is not prepared for NLP projects. One example is 
when we submitted an ambitious project on word vector 
development to the regional ethics committee (REC) in 
November 2018. Our plan was to analyse the entire collection 
of clinical text at Akershus University Hospital (Ahus) 
with ML, in order to produce clinical word embeddings 

– mathematical models of the meaning of individual words. 
The application was reviewed by several local and national 
committees over the course of 18 months before final 
approval. We hope that this exercise has established a 
precedent for NLP projects within these review committees 
and that this familiarity will make future reviews faster. 

In the group’s project on automatic detection of family 
history of disease, we found a workaround. Rather than 
using actual clinical records, we developed synthetic 
clinical text. A clinician produced entirely fictitious journal 
notes that contained descriptions of family medical 
history. These were realistic in form and content, but did 
not contain sensitive information since they referred to 
non-existing patients. This synthetic data set was used 
for ML, and the results were published scientifically, which 
showed that systems trained on synthetic data may 
also generalize to real, clinical text for the task of family 
medical history extraction. With a collective effort by 
clinicians, it may be possible to produce synthetic journal 
note collections for a wide range of medical contexts – a 
resource that could be valuable to many NLP researchers.

3.2.2 Text processing pipeline
A well-functioning text processing pipeline is the backbone 
of any clinical text analysis project. Fortunately, Ahus had 
most of this in place up front, supplemented by state-of-
the-art tools for pre-processing based on Norwegian NLP 
resources developed by the Language Technology Group 
at the University of Oslo. The first step is the extraction 
of the relevant journal notes from the EHR system, where 
documents are typically stored in RTF or PDF formats, and 
formatting must be removed. Further processing steps 
such as sentence splitting, tokenisation, stemming or 
lemmatisation may be needed. For some cases, a step of 
provisional parsing and tagging is useful. The pipeline should 
also have a system for separating out test data in dedicated 
directories that are accessed only after all the modelling is 
finished, to ensure valid evaluations of model performances. 

3.2.3 Neural network modelling 
Deep neural nets are very complex entities, and the 
algorithms used to train them represent cutting-edge 
research in informatics, mathematics, and statistics. It is 
virtually impossible to decide beforehand what kind of 
model will work best, and which training parameters to use. 

However, as an empirical and experimental 
process, neural network modelling is relatively 
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easy to perform. There are free online repositories for Python code that implements 
most state-of-the-art text analysis models. Utilisation of these models does 
require a competence in general programming skills, but the models themselves 
are basically plug-and-play and separate neural modules can be combined. 

In this project, we have experimented freely with several types of neural networks, including 
support vector machines (SVM), long-short term memory (LSTM) and convolutional neural 
network (CNN) models. With the widespread adoption of neural modelling techniques, it is the 
availability of annotated data that directs research within the field of NLP in general and within 
BigMed. An important step in advancing clinical NLP for Norwegian language text will be the 
creation of clinical datasets with expert annotations for use beyond individual research projects.

3.2.4 Supervised learning 
A previous case of syncope (loss of consciousness) is a known risk factor for sudden cardiac 
death. Syncope is frequently described in clinical notes, although its ICD-10 (International 
Classification of Diseases) code is often not used. Supervised learning in NLP requires 
annotation by humans. For the task of automatically identifying syncope cases, clinicians read 
through a collection of clinical texts and identified actual syncope cases. This represented 
the “ground truth” that we trained neural models to imitate. Having a human expert provide 
the learning signal by annotating the data set is a typical case of supervised learning. 

In another application, we trained neural models to decide if a given CT-scan report describes 
any abnormal finding. This also required annotations by a human expert, who could provide 
samples of correct classifications. The effort required for annotation are easily underestimated 
in ML projects, and the quality and quantity of annotations are often the limiting factor.

3.2.5 Unsupervised learning 
Unsupervised machine learning occurs in the absence of expert-generated learning to imitate. 
Our word vector project referenced in the data access section above is a typical example. 
By analysing enormous amounts of text, the algorithms can establish a simplified language 
model, which represents the meaning of a word in an abstract vector space of a few hundred 
dimensions. Word vectors, or word embeddings, can be useful by themselves, as a means to 
identify synonyms and contextually related terms, but they are even more valuable as building 
blocks in supervised learning applications. In the syncope case, the learning task will be easier 
if the program is fed word vectors that already know that “besvime” (eng: faint) is related to 
“synkope” (eng: syncope). We tried to use word vectors derived from other text sources than 
clinical text, with little success. This supports our initial assumption that clinical text is very 
different from other text sources, with a specialised vocabulary and often simplified syntax. Our 
clinical word vectors have not yet been completed, but this is an application we are planning. 

3.2.6 The road ahead: clinical usefulness
We need to address clinically relevant problems that can be handled technically in a legally and 
ethically acceptable way. So far, the legal and ethical restrictions may have been the limiting 
factor. This appears to be changing, in part due to the efforts of BigMed. The technological 
development has strong momentum, and new language models and training algorithms are 
developed at an impressive speed all over the world. The critical dimension from now on will be 
the clinical usefulness. Focus should now be on finding and implementing the applications that 
give the highest yield in terms of improved clinical decisions and higher clinician efficiency.
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There is a problem of information overload for 
clinicians, but this may be reduced by on-going efforts 
to improve formal coding systems for diagnoses and 
treatments and enforcement of common definitions 
and key terms. However, human language has evolved 
over thousands of years for the purpose of effective 
communication, and attempts to replace it with formal 
systems have had mixed results. The clinical notes 
that are currently being written in natural language will 
still be necessary and useful for quite some time. 

3.3 BIASES AND PITFALLS IN USING 
REAL WORLD HEALTH DATA

Pål H. Brekke (Oslo University Hospital), contributions by 
Arnoldo Frigessi (Oslo University Hospital, University of 
Oslo), Fredrik A. Dahl (Akershus University Hospital) 

 
Health record data has been described as “the new 
oil”, as there is enormous potential value in analysing 
our collective health care experience. To continue the 
petroleum analogy, there are quite a few steps needed 
before refining a usable product from EHR data, and there 
is also a risk of producing something that causes potential 
harm. As analysis tools become more powerful and easier 
to use, it will be tempting to use them on large datasets, 
but an understanding of the processes behind the data is 
needed in order to avoid drawing the wrong conclusions. 

The ways diseases are defined and diagnoses made are 
continuously changing, and new biomarkers and other 
diagnostic tools are being developed. Likewise, treatments 
are changing in step with development of new technology 
and procedures. For example, dramatic changes have 
occurred in cardiovascular disease in the past decade 
or so, where open bypass and aortic valve replacement 
surgery has shifted towards minimally invasive catheter-
based interventions. These changes have implications for 
ML. For example, if a machine learning-based decision 
support system was trained on 1990s or 2000s data on 
aortic valve disease, it would likely recommend open heart 
surgery, or even no invasive treatment, when current best 
practice is a preference for catheter-based intervention. 

It is likely that both etiological understanding and 
treatment of several diseases may go through similar 
paradigm shifts in the future. When using data from clinical 
practice to inform decision models, one should at least 
plan to regularly update algorithms in step with changes 

in clinical guidelines, lest models “fossilise” outdated 
thinking. Also, with availability of new procedures and 
change in associated risk, the populations considered 
for treatment – and actually treated – change.  

A well-known problem for medical researchers, but perhaps 
new to those approaching medical AI from a data analytics 
background, is the fact that diagnostic codes (commonly 
ICD-10) assigned to a patient’s record are significantly 
influenced by economic considerations. Hospitals are 
reimbursed for their costs based on reported diagnoses and 
procedures, and there is even a requirement for hospitals 
to increase their “coding efficiency” year-on-year. This 
conflation of billing and medical information potentially 
leads to apparent rise and fall in disease prevalence in step 
with reimbursement changes, and also to a disproportional 
lack of “low value” ICD codes, particularly codes related 
to symptoms or findings, which in themselves do not 
lead to any reimbursement. Using diagnostic codes as 
ground truth labels, then, comes with some challenges. 

A more insidious problem in machine leaning based on 
real-world data is the risk of replicating and amplifying 
human and/or systematic biases. This is highlighted in 
other fields such as automated loan application processing, 
predictive policing in the US, and HR department 
pre-screening of employment candidates. While the 
Norwegian public healthcare system prides itself on giving 
equal access, socioeconomic, cultural, and geographical 
factors influence the use of, and access to, different parts 
of the healthcare system 6. Under or over-representation 
of groups in the data, and potentially different treatment 
given to different groups, can result in biased predictions 
or recommendations from AI-supported systems.  

Data from clinical practice is inherently less complete than 
data from a prospective research study in which every 
person or patient has gone through the same analyses 
and observations according to a protocol. In real world 
data, diagnostic tests are performed for a specific reason, 
which means data will exist – or not exist – in non-random 
ways which are very hard to reconstruct, model, or 
correct for. Since most diseases have a time course, tests 
which are negative or inconclusive at the beginning of a 
patient trajectory may change to be positive later on – or 
vice versa. Additionally, any treatment that was started 
will also affect many of the measurable parameters, 
further complicating data modelling and analysis. 

3
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On a local level, hospitals may cater to very different patient 
groups according to their available facilities. It is debatable 
whether patients from a large university hospital and 
a small hospital are in fact comparable even if they 
have the same diagnosis. For example, more severe 
cases requiring specialised care are more likely to be 
transferred or immediately admitted to larger hospitals 
with better facilities, which may skew the data. It is a 
well-known issue that the predictive value of a particular 
diagnostic test changes with the population in which 
you apply it. Similarly, AI models trained on data from 
a university hospital may not be directly applicable 
to a local hospital without additional refinement. 

External validation of ML models is an important 
consideration as well, and access to a variety of patient 
data from different settings needs to be considered 
in project planning. This requirement has implications 
for laws and regulations in the medical AI space, as 
increased access to health data – even outside the 
researcher’s own institution – is paramount in order 
to validate findings and ultimately ensure patient 
safety if or when the model is deployed clinically. 

While the use of clinical data in machine learning or AI 
applications comes with some caveats, there is enormous 
potential value in the collective clinical experience archived 
in our healthcare systems’ records. However, in order 
for AI to be lawful, ethical, and robust, as the guidelines 
from the European Commission’s High-Level Expert 
Group on AI recommend 7, it is important to be aware 
of the potential pitfalls when planning, evaluating, and 
performing a health AI project using real world clinical data. 

3.4 ACCESS TO GENOMICS DATA THROUGH 
SHARING ACROSS ORGANISATIONS 

Tony Håndstad (Oslo University Hospital), contributions by 
Sharmini Alagaratnam (DNV), Serena Elizabeth Marshall (DNV)

Regardless of the data need – be it sharing in research, 
inclusion in real time analytics for decision support, in 
process improvement, or other needs – access to the data 
at the point of analysis is key. Several standards are ready 
and in development for using federated computational 
resources and shared data. These standards will enable 
clinicians and researchers to leverage the world’s 
genomic and clinical data in a much more automatic 
and advanced manner than we can imagine today.

3.4.1 Overcoming data silos
Health data silos arise when healthcare institutions collect 
and store only data generated from their own patients, 
with limited or no possibility to either share data or access 
valuable knowledge from other parts of their own institution, 
similar institutions or organisations. Data silos also occur 
within organisations when data is produced by different 
tools or stored in databases that are not networked. 

In the field of genomics, sharing of data and knowledge 
is essential for the quality of healthcare diagnostics 
and also to advance our understanding of genomics 
for future patient benefit. DNA sequences can only 
be understood when viewed in relation to other 
sequences. For example, by comparing similarities in 
DNA and phenotype among patients with disease and 
contrasting that with the characteristics of healthy 
people, we can better understand the cause of disease.

3.4.2 Quality assurance of variant classifications 
– making sure our diagnosis is right

Sharing of classifications and supporting evidence 
between laboratories will lead to harmonisation of 
classification procedures and standardisation of 
formats used. This will drive continuous improvement 
of this emerging area of diagnostics.

In the field of medical genomics, we are typically interested 
in information about genetic variants and their relation to 
disease. The distinction between single variant knowledge 
databases (where an “aggregated” list of individual unrelated 
variants is accompanied by further information about 
each variant) and genome databases (where all variants 
observed within an individual patient are linked together) 
is an important one as these databases have different use 
cases and different challenges with respect to data privacy. 
A single variant database aggregates knowledge about 
individual variants. In theory, all possible variants across a 
4 billion letter reference genome can be included in such 
a database, but usually only the variants observed in a 
source patient population or clinical cohort is included.

3
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Box 1: Variant Exchange 

A solution developed by DNV in the BigMed project with the aim of facilitating 
safe and secure sharing of classifications (interpretations) of single variants 
between different genetics labs. Variant Exchange allows each participating lab 
to choose which other labs can access its data and automatically notifies them 
about any classification discrepancies among cooperating labs. The solution 
is in use today by several labs in the Nordics. Department of Medical Genetics 
(DMG) at Oslo University Hospital (OUH) and Rigshospitalet in Copenhagen 
have already successfully shared variant classifications. 

3.4.3 Genome databases to increase knowledge 
Genome databases contain patient-specific information and typically also phenotype 
descriptions and other patient details, even familial relationships between genome 
donors. The information about which variants co-occur in each individual patient 
can be used to infer haplotypes and is also useful in several other contexts. A 
genome database with patient specific data naturally contains more privacy-sensitive 
data and therefore needs better protection than a single variants database. 

Single variants database Genome database

Variant Frequency and class Individual genomes

Chr1 35 A>C 2,0%, class 1 Patient A: Chr1 35 A>C, Chr3 535 T>C, …

Chr1 49 G>T 0,4%, class 3 Patient B: Chr8 4234 G>C, ChrX 1435 delT, …

ChrX 1435 del T 0,0%, class 5 Patient C: Chr1 35 A>C, Chr5 424011 G>T, …

… … …

Table 1: The distinction between single variant databases and genome databases

3.4.4 Federated or centralised sharing of genomics data 
Data can be gathered into centralised databases or spread across several de-centralised 
databases. While the idea of having only a single database can seem attractive, it’s not always 
possible nor desirable to centralise the storage of data into a single database. When it is not, 
it might still be desirable to standardise the method of access to the data and perhaps even 
create a way of querying across several databases using a single interface. This is common 
in federated networks. With such federated databases, communication typically happens 
according to a defined protocol, and access can also be controlled and restricted by the 
communication service that acts as an interface between the data and the requestor.
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Box 2: Federated data sharing 

Systems architecture, data standards, and cybersecurity protocols are 
often unique to each institution. This makes data sharing challenging. 
Institutional and individual interpretation of GDPR and national laws leave 
many clinicians and researchers unsure about the legality of sharing or 
providing access to patient data for primary or secondary analyses. The 
necessity for federated databases and federated sharing has arisen due 
to existing problems with highly limited accessibility to data within silos 
resulting from interoperability, privacy or organisational proprietary issues.

Although centralised databases with data collected in one common silo 
have traditionally been proposed as an approach to overcome these barriers, 
such solutions have been criticised because they create double work and 
raise sustainability, synchronisation and ownership issues. If unaddressed, 
limited datasets will hinder creation of the knowledge needed to improve 
diagnoses and tailor treatments in the precision medicine paradigm. 

The proposed solution is federated sharing within federated networks, allowing 
the user secure and standardised access to data at different locations, without 
the data having to leave its storage location. 

 
Examples of genomic services that store and share data behind a standard 
interface include Beacon network 8 and Matchmaker Exchange 9. BigMed has 
implemented and demonstrated the practical use of these solutions.

Beacon is a standard service defined by the Global Alliance for Genomics and Health 
(GA4GH) that is meant to serve as a simple low-risk platform for data sharing. Organisations 
can set up a simple web-based service using Beacon that can answer questions like 
“Do you have any information about variant X?” A beacon response can be as simple 
as “Yes” (and contact info if further details are wanted) or “No” (in case the variant has 
not been observed by the organisation). The protocol is evolving to also allow for richer 
responses, such as information about the observation frequency, any interpretation of 
the variant, or even info about the patients that had those particular variants. Beacons 
are typically publicly accessible, but it is also possible to restrict access, partly or fully.

While a beacon is a simple service typically used to query for exact matches against single 
variants and related data, Matchmaker is a service designed to find similar patient cases. 
Matchmaker, similar to beacon, is also a web service, but it is only open for communication 
between trusted partner organisations and allows for more lenient matching. A matchmaker 
service is queried by presenting a patient case (specifying a suspected gene or variant, 
and a phenotype description structured according to the Human Phenotype Ontology 
(HPO). The queried matchmaker service must then examine its database and evaluate 
if it has any patient case that is sufficiently similar (e.g. a case with a similar phenotype 
and another suspicious variant in the same gene). Matchmakers enable the discovery 
of “the second case”, e.g. evidence of a novel gene-disease relationship. Matchmakers 
in the Matchmaker Exchange network have already led to the discovery of several new 
gene-disease relationships and the correct diagnosis of many rare disease cases. 

3
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Box 3: Different genomic databases and interfaces with examples 

Centralised databases

 Single variants

 – Frequency databases like gnomAD and Norgen
 – Variant classification databases like Clinvar, CIViC and Variant Exchange 
  
 Genomes
 – Centralised databases like EGA – European Genome Archive
 – Norvariom 
 
De-centralised databases and federated data sharing solutions

 Single variants
 – Beacon (sharing information about single observed variants)

 Genomes
 – Matchmaker Exchange (sharing of patient cases to identity patient similarities) 
 – Federated databases like federated/local EGA

The future of genomics with seamless use of federated computational resources is 
reliant on more standards development. We need this to successfully enable data 
sharing and for the use of advanced pattern matching to reach its broadest potential. 
It is vital that also the legal frameworks are flexible enough to mirror the patient’s 
interests, who’s only hope can rely on effective cooperation of labs around the world.

3.5 STANDARDISATION AND QUALITY ASSURANCE 
OF MOLECULAR DIAGNOSTICS 

Eivind Hovig (Oslo University Hospital, University of Oslo), contributions by Oleg Agafonov (DNV), 
Tony Håndstad (Oslo University Hospital)

Next generation sequencing (NGS)-based testing has transformed molecular diagnostic 
routines. In some cases it has replaced older technologies, while in other settings – such 
as single-gene testing, arrayCGH, and karyotyping – it has complemented them. 

One of the main benefits of NGS-based testing is the ability to test a high 
number of loci for various types of disease-causing variants in a diverse genomic 
context. Nevertheless, despite the benefits of the NGS-based testing, its novelty 
leads to a lack of harmonised procedures and protocols. This may cause 
inconsistent results from diagnostics performed at different clinical sites.

NGS-based testing is comprised of multiple steps: test requisition, sample collection, 
library preparation, sequencing, data processing, variant calling, variant annotation, 
variant classification and prioritisation, and finally clinical reporting. Figure 3 depicts a 
germ-line testing procedure. Each of these steps influences the steps downstream, and 
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ultimately has the potential to affect patient management and treatment. Therefore, it is 
paramount to ensure the quality of each step to ensure the quality of the test result.

It is important to note that NGS approaches for clinical diagnostics vary significantly 
between germ-line sequencing of e.g., rare diseases and cancer, in which the body cells are 
genetically altered. As cancer cells can harbour thousands of changes, in many dynamically 
changing ways, it is important to have robust systems to identify the changes in the patient. 

This is a difficult challenge, as there are numerous sources of error in sample selection, 
sample handling, lab methods for sequencing, and the toolkit of bioinformatics 
methods used to identify the DNA and RNA changes in the tumor. These changes 
add even more complexity to the task and should be compared to germ-line genomic 
context of the patient to ensure the best way of identifying the variation that is 
unique to the tumor cells. Furthermore, there is an array of parameters that may be 
derived from the raw sequence results that have potential implications for treatment, 
such as the total number of mutations for a tumor and the mutational load.

High-throughput sequencing is not without technical challenges. In its routine use in 
diagnostic and research labs, technical artifacts and problems will occasionally occur. 
Analytical validation and quality control are essential for the safe use of the technology. 
Quality control (QC) should be implemented both at the individual sample/analysis level 
as well as regularly monitored on a higher level across samples/analyses. QC per sample 
should be automated as a part of the variant calling pipeline. An important part of QC is 
to regularly sequence control samples and/or reference materials. These are samples that 
typically have a list of known variants (gold standard) confirmed with multiple, orthogonal 
technologies. Control samples should be automatically compared against gold standard 
datasets to measure accuracy (sensitivity and precision), lower limit of detection, false 
positive and negative rate, and other performance metrics. The Oslo University Hospital 
Department of Medical Genetics (DMG) has implemented trend monitoring of both control 
sample calling accuracy and several other parameters in an application called MegaQC 10. 

Figure 3. The genetic testing process.
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Benchmarking is a tool for measurement of the test 
performance and comparison of the results between 
laboratories which can be a part of continuous 
quality improvement and inform test developers on 
which practices result in the best performance.  

Variant calling pipelines are continuously developed as lab 
protocols, software parameters, and reference data change. 
It is therefore important to have automated integration 
and end-to-end tests to validate changes before they 
are applied to production data. A static (non-changing) 
control sample data set can then be used for monitoring 
calling accuracy and successful execution of the 
pipeline under development. A successful end-to-end 
test should ideally be logged in the continuous 
integration system that bioinformaticians use. It can 
then be referred to in the documentation produced 
as part of change management procedures.  

During the BigMed project, we benchmarked the most 
popular tools for variant calling of Single-nucleotide 
polymorphisms (SNPs) and short insertions and deletions 
(InDels): diagnostic analytical pipelines performance, 
variant interpretation across Nordic laboratories, 
and clinical reporting procedures. These exercises 
provided information which led to modification of analytical 
pipelines and other routines in the diagnostic laboratories. 

By performing benchmarking exercises, we learned that 
design, administration, coordination, and data analysis 
takes significant resources and time. Clinical laboratories 
are unable to provide the same level of resources to 
these tasks as research laboratories. In some instances, 
even when the benchmarking was organised by a third 
party, clinical laboratories were not able to commit to the 
exercise due to the lack of time. If a laboratory participates 
in a continuous quality improvement program (e.g., as an 
activity supporting ISO 15189 accreditation), it is important 
to ensure that adequate resources are allocated for it. 

We have also found that most of the value provided 
by the benchmarking originates from a comparison 
of results between laboratories with similar settings. 
For this purpose, consortia such as ICGC, PCAWG, 
and NACG have proven to be valuable grounds for 
national and international cooperation between 
clinical genetics laboratories. Such consortia allow 
not only comparisons of performance metrics, but 
also enable in-depth discussion and the identification 
of best practices. This leads to improvements of test 
performance that will ultimately benefit patients.  

As cycles of testing continue, standards 
will eventually emerge where sensitivities 
and specificities are more robustly defined. 

Figure 4. An example from MegaQC dashboard.

3
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Assay performance should be linked to these. Today, researchers are beginning to 
define these standards for different end-points, but there is still a long way to go 
before this work is complete internationally, even for many of the basic assays. 

However, developing these standards seems to be a relatively modest problem. Generally, 
both research and clinical activities utilise the same basic instrumentations and algorithms. 
Research will inform standards development, and for tests under development, this 
implies that they may become available as supplementary information to the basic clinical 
tests being performed in clinical decision making. Quality should be ensured throughout 
test development, test validation, and ongoing QC. If a laboratory develops its own 
tests (lab-developed test, LDT), the tasks of both validating the test’s analytical and clinical 
performance, verifying that this performance is met in routine use, and ensuring conformity 
to the regulatory requirements described in the IVDR fall upon the laboratory. If a 
laboratory uses a CE-marked IVD test (an off-the-shelf commercial assay), development is 
performed by a commercial provider. Nevertheless, the diagnostics laboratory still needs 
to verify that the test performs according to specifications and to perform regular QC. 

There are ongoing local, national and international curation efforts to define genetic 
variants of clinical significance. Ultimately, it seems that the most informed solution 
will be to assemble information from all patients in the world. There are ongoing 
efforts to share data across borders to enable such ambitions, and international 
consortia are already actively engaged in handling knowledge management for 
selected genes and conditions. Knowledge resources will be constantly enriched 
over time, and the potential for therapeutic options will grow. Thus, EHR systems 
should also be handled by automated flagging procedures of previously analyzed 
patients, in order to ensure that clinicians are kept up to date on new therapies.
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4. ICT Infrastructure 

A key element in precision medicine is the data and 
the knowledge that comes with it. In order to utilise this 
knowledge, we need to establish an ICT architecture suited 
for precision medicine. Basic infrastructure must be able 
to facilitate flexibility, storage, processing power, access 
control, and security requirements for sensitive data. 
Open and dynamic platforms, established on top of the 
ICT infrastructure, and services to facilitate data sharing 
are also crucial for the success of precision medicine. 

Prior to BigMed, there were no suitable existing innovation 
platforms for precision medicine within Oslo University 
Hospital (OUH). A major part of the infrastructure in the 
project work has therefore been to design an inno vation 
platform and automate data flows. An innovation zone 
with the potential to mimic a production environment was 
established and tested within the hospital by Sykehuspartner. 

During the active project phase, BigMed had a testbed on the 
Services for Sensitive Data (TSD) at the University of Oslo, 
which has an existing high-performance computer (HPC). 

Throughout the whole project, the infrastructure group was 
involved in all tool development processes – from the 
concept phase, the mapping of needs, all the way to 
supporting the work – including designing and building 
solutions that will be left behind as a permanent feature for 
the next innovation project.

BigMed has also worked with standards and frameworks 
that promote interoperability and open platforms. This work 
has stretched from the use of ontologies such as SNOMED 
CT and Human Phenotype Ontology (HPO) and standards 
like HL7 FHIR and openEHR, to structuring of clinical 
content to technical specifications for metadata and APIs.

While some fundamental building blocks have been 
established through BigMed, there is still a long way to 
go before we have a high functioning ICT platform for 
precision medicine in the clinic and data driven innovation.

4
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Sections in chapter 4

4.1  Infrastructure of South-Eastern Norway Regional Health Authority 
for implementation of precision medicine in the clinic 

4.2  Infrastructure needs of the research & innovation communities 
4.3  Production platforms for data sharing in real time 
4.4  Enabling open platforms 
4.5  Dynamic digital consent

Additional BigMed material 

Bigmed reports
 − Implementing NGS-based diagnostics in cancer care:  
Technical and organisational factors in the Nordics 

 − Consent for clinical genetic testing in Norway – Considerations 
to the development of process and content

 − Germline genomic medicine: A BigMed needs analysis 
 − Big data management for the precise treatment of three patient groups 

Podcasts
 − Cardiology and Technology 
 − ICT Infrastructure for Data driven Innovation 
 − IT Infrastructure needed for Precision Medicine in Norway

Recorded webinars 
 − BigMed-konferansen 2020: Veien til presisjonsmedisin 
 − Federated Analytics of Health Data

An overview of all material from BigMed is available at bigmed.no

https://bigmed.no/assets/Reports/implementing_ngs-based_diagnostics_in_cancer_care_dnvgl.pdf
https://bigmed.no/assets/Reports/implementing_ngs-based_diagnostics_in_cancer_care_dnvgl.pdf
https://bigmed.no/assets/Reports/consent-process-2020.pdf
https://bigmed.no/assets/Reports/consent-process-2020.pdf
https://bigmed.no/assets/Reports/bigmed-dnv-gl-genomic-medicine-needs-white-paper-2020.pdf
https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://bigmed.no/podcasts/cardiology-technology
https://bigmed.no/podcasts/ict-infrastructure-innovation
https://bigmed.no/podcasts/infrastructure-precision-medicine
https://vimeo.com/469672581/59bc331c8f
https://youtu.be/uur9lXzzDFs
http://bigmed.no
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4.1 INFRASTRUCTURE OF SOUTH-EASTERN NORWAY 
REGIONAL HEALTH AUTHORITY FOR IMPLEMENTATION 
OF PRECISION MEDICINE IN THE CLINIC 

Alia Zaka (Sykehuspartner), contributions by Knut Lindås (Sykehuspartner), Sevald Cirkov 
(Sykehuspartner), Vebjørn Arntzen (Oslo University Hospital), Tony Håndstad (Oslo University Hospital) 

Below we will briefly highlight the areas of the South-Eastern Norway health region (SEN) 
infrastructure that we worked on as part of the BigMed project. These areas will require further 
development to ensure that precision medicine becomes an integrated part of the hospital 
services. Reflections and opinions are based on our experiences in the BigMed project.

The ICT architecture of the SEN health region is a complex landscape. This, coupled with the 
lengthy processes for a coordinated implementation of new technology across all hospitals in 
the region, makes it challenging for clinics aiming to offer services within a fast-moving field 
such as precision medicine. 

4.1.1 Secure innovation platform within the hospital network
The project identified the need for a secure innovation zone within the hospital network 
due to the vast number of research projects in SEN and the information security 
requirements and privacy concerns regarding personal information. To address this need, 
we designed and constructed the BigMed-zone where health personnel and researchers 
in collaboration with the industry can develop, test, and validate innovative software 
solutions before commercializing or implementing new tools for clinicians in the clinic.

Box 4: Innovation in the BigMed zone 

The BigMed zone is a secure project place for data-driven innovation, established 
through the RIF-program which is run by SEN regional health authority. The zone 
is established on the Oslo University Hospital infrastructure and fulfills the same 
technical and security requirements as for production zones regarding both 
storage and exchange of patient data. Access can be given to one project at  
a time. 

 
There are plans to make the process of requesting such an innovation zone and 
obtaining access for the project members a standardized self-service in SEN, 
accessible to all hospitals. However, it is important that necessary risk and safety 
assessments are carried out only once, when the service is established. Which 
applications are to be tested, which test data is to be used, and the compliance with 
policies and regulations, should be the requesting project’s own responsibility.

4.1.2 Data provisioning for research & development purposes
Access to health data is crucial for the development, testing, and validation of data-
driven applications based on ML and AI. The process for both the REC-approval, and the 
following technical process of data extraction from the hospital’s EHRs, is complicated 
due to strict regulations on patient-sensitive information. Each data extraction 
must be performed manually by creating a new customized script every time. 

4
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Figure 5. WGS pipeline at the Department of medical genetics at OUH. This pipeline is a prime example of a complicated and vulnerable 
diagnostic pipeline and inefficient use of the staff’s time. Such a pipeline could benefit from further digitalisation and automation as initiated 
through BigMed, as well as fewer steps of data transfer between different networks both for efficiency and security purposes. As diagnostics 
move towards more precision by using more data, this pipeline becomes further complicated by the incorporation of phenotype data (sent from 
LIMS1 (Laboratory Information Management System) located in the OUH-network) in variant analysis (in ELLA located on the TSD-platform in 
the UiO-network).

Rapid Whole Genome 
Sequencing Pipeline
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Standardised and automated pipelines for efficient 
extraction of health data from EHRs are needed. 
De-identification is often a need driven by the data 
minimisation principle in the privacy regulation.

Such pipeline solutions should be established as 
self-services based on the REC approval or dynamic 
patient consents if such a digital solution for 
patient consent existed on the SEN platforms. 

Box 5: De-identification of health data 

As we worked towards automating the process 
for data extraction from the EHR system DIPS, 
we tested a tool for de-identification. However, 
the tool removed substantial amounts of 
contextual information which may make it 
difficult to find trends and patterns in the data 
and build AI-models. Commercially available 
de-identification tools require users to spend a 
considerable effort on maintaining the libraries 
on a regular basis and create customized filters 
for each project. This makes them less suited 
for automated pipeline services. 

4.1.3 Storage and computational power for the clinic
Storage and high-performance computing must be an 
integrated part of the SEN infrastructure in order to efficiently 
process and analyze the vast amounts of clinical and 
genomics data needed for both research and diagnostics. 
Today, each individual clinic has been left to care for its own 
needs. As a result, many in the genetics communities are 
using the TSD storage and computational power services 
at the University of Oslo (UiO), and exploring other more 
expensive options in commercial cloud-based platforms.

As clinics have to access storage and computational 
power outside the hospital network, different parts of 
diagnostic pipelines run on different platforms. This 
results in the clinics spending valuable time on creating 
workarounds for their ICT-solutions. This is time taken 
away from research and patient diagnostics, and the whole 
argument for a centralised ICT-service within SEN falls 
short. The complex pipelines need several checkpoints due 
to data transfer between different platforms. Additionally, 
such solutions are not scalable on short notice. 

4.1.4 Platform for agile software 
development and deployment 

Today, the rate of adoption of new technology into the 
clinics is slow. There is a need for ICT platforms and services  
that will facilitate more agile development and deployment. 
More frequent releases of specialist applications will 
allow the clinic to benefit from the latest functionality 
and drive a continuous digitalisation of their workflows.

The modernisation rate of health services will be greatly 
improved by also facilitating local efforts for incremental 
functionality improvement in hospital EHRs in the innovation 
zone, and by having streamlined decision processes for 
rapid evaluation and coordinated implementation of the 
new functionality in hospitals across the SEN health region.

To be able to offer state-of-the-art diagnostics, clinics also 
rely on in-house development. It is of concern that they 
use alternative infrastructure not only for development 
purposes, but also continue to run diagnostic pipelines 
on infrastructure that is dedicated to research, hence 
does not deliver on the higher uptime requirements for 
clinical diagnostics pipelines. A solution must be found 
to avoid leaving vulnerable patient groups at risk of not 
receiving the proper medical care at the right time. Support 
for in-house development and subsequent frequent 
deployment to a stable and secure production platform 
will ensure that the clinic can use the latest technology 
to provide immediate care in a predictable way.

4.2 INFRASTRUCTURE NEEDS OF THE 
RESEARCH & INNOVATION COMMUNITIES

Gard Thomassen (University of Oslo), contributions by Tony 
Håndstad (Oslo University Hospital), Loek Vredenberg (IBM)

Through the BigMed project, our UIO ICT 
partner has identified common needs that must 
be addressed in order to create a functioning 
innovation zone for hospital related projects: 

• Sufficient and adequate hardware and software
• Better data access
• A test site that does not jeopardize 

privacy or hospital operations
• Access to international reference data
• Data/result visualisations for clinicians 
• A pipeline for moving innovations into 

hospital production systems

4
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4.2.1 The challenges research & innovation environments face
Today we struggle with the gap between platforms that serve researchers and clinics. 
As precision medicine converges towards the idea of “one patient equals one research 
project”, the traditional split between research and the clinic will erode (clinical trials 
within cancer are relevant examples of this development). Seamless dataflow between 
the clinic and research will therefore become critical for research in the near future. 

The world of research differs greatly from that of clinical diagnostics. It is based on trial, 
error, and testing of hypothesis. It can be a slow and lengthy process and the future impact 
on patient treatment is uncertain. It is therefore often thought of as less time critical. 

When research and clinical activities are supported by the same ICT provider, it is 
likely that research and innovation needs must yield to clinical needs. To ensure 
a steady focus on research and innovation activities, ICT resources should be 
delivered without impeding clinical deliverables, but while still ensuring an effective 
flow of data between clinical and research/innovation ICT infrastructures. 

Experience from the Nordics, like the Danish Genome Center & Copenhagen 
University HPC and Karolinska University Hospital & SciLifeLab at the 
Karolinska University, show that collaboration with an academic partner 
is one way to help hospitals gain access to specialised IT capacity and 
competence, and allow mutual sharing of experience and knowledge. 

4.2.2 Platform based IT deliverables 
Modern IT solutions (AWS, MS Azure, etc.) are appropriate for internal and 
external use. These platforms are made up of fairly independent components 
with certain obligations to each other. This implies that components can evolve 
and change as long as they fulfill their obligations to each other. The platform 
approach is the most sensible solution when designing the ICT systems of the 
future, as this will prevent one single system from becoming too complex. 

Traditional IT-systems often create “vendor lock-in” at the expense of APIs and 
collaboration. We postulate the following:

• The hospital IT networks must be agnostic with respect to the payload 
that is sent (via APIs) over the network (transport layer). By transferring 
the network into a transport layer, any authorized and authenticated 
research & innovation centre will be able to access the data. 

• Clinical IT systems should strive to enable APIs on all functionality, 
including large scale data-dumps. The ultimate goal should be to 
offer (RESTful) API solutions on all IT services in HSØ.

• Establish one HF/company which operates (here “HCN” – “Health Compute 
Norway”) two similar physical sites for “advanced data processing in the clinic”. 
HCN should provide services for hospital clinics that require massive storage 
combined with high performance computing. HCN should also collaborate 
strategically and competence-wise with Uninett Sigma2 AS, UiT, UiB, NTNU and 
UiO. This includes lessons learned in the HUNTcloud and TSD infrastructures.

4
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• SEN RHA should establish a new IT entity for research 
and innovation services in close collaboration with 
the IT department at UiO, or outsource it to UiO in 
its entirety. This will enable a setting where HSØ IT 
research does not compete with HSØ clinical activity, 
while still keeping synergies of ongoing collaboration. 

Changing the architecture of health IT should be done 
in a step-by-step manner. The goal should be platform-
based delivery. This is the most likely way to enable stable 
operations combined with an opportunity for several third-
party clinical IT suppliers, especially from the SME segment. 

There is a need for a significant change in how IT services 
are offered for research and innovation in connection with 
precision medicine. We require improved data access 
from and to hospital systems. Research and innovation IT 
services should be delivered by an entity not responsible 
for clinical operations. Advanced clinical computing and 
storage should be handled by a new entity focusing only 
on this. Both organisational, IT technical, and IT policy 
changes must be implemented to make this possible.

4.3 PRODUCTION PLATFORMS FOR 
DATA SHARING IN REAL TIME 

Loek Vredenberg (IBM), contributions by 
Gard Thomassen (University of Oslo)

The drive towards precision medicine has resulted in an 
overarching technical vision which we have not seen before. 
BigMed aimed to develop a technology platform that 
would allow for the management of data and operation of 
services and applications for precision medicine. In the initial 
phases of the project, we established a more production-
oriented platform to manage this from a clinical production 
standpoint. In developing this platform, we identified 
several technological challenges and possible solutions. 

4.3.1 Examples of existing platforms
Internationally, there are a few examples of operational 
platforms performing similar tasks in healthcare akin to what 
BigMed is working to establish. These platforms have been 
in production for several years. They are able to manage 
large amounts of patient data that deliver a longitudinal 
view of patients and their involvement with their health 
systems. Updates such as doctor visits, interventions, lab 
tests and other tasks are mostly performed in near real-time. 

The platforms that are in use are clearly  
distinguished between two types of systems:
• Operational healthcare data systems such as 

EHR systems, lab systems, imaging systems, and 
systems that connect with and store data from a 
diverse range of medical technology equipment

• Analytical systems that are designed to access and 
analyze large amounts of diverse types of data like HPC 
for genomic data analysis, research data, statistical data 
analysis, real world evidence (RWE) systems, and more.

Traditionally, the two systems have served different 
purposes. The first system addresses the need for 
speed and direct access, whereas the latter a needed 
capability for large volumes of data and speed of 
analysis. For that reason, the systems have different 
architectures driven by their specific needs. 

4.3.2 Challenges of developing a new architecture
It is difficult to integrate hundreds of different clinical 
systems from cohorts of patients into one coherent 
architecture. Constant innovation and adaptation of new 
technologies compound this challenge. A good integration 
of architecture that also provides the flexibility to add new 
data sources over time is of paramount importance.

To meet these challenges, the new architecture must 
be able to:
• Anonymize and/or de-identify patient information from 

unstructured data while maintaining data integrity
• Efficiently integrate many different source systems
• Ensure that correct and timely data is used 

for precision medicine decisions
• Secure access and manage data in accordance with local 

laws and regulations 

4.3.3 The future is Open Architecture
We drafted a reference architecture based on open-source 
software with a clear division of responsibilities. This 
new reference architecture will ensure analysis results 
have scalability, reliability, and speed. It was developed 
as an iterative collaboration between technology 
providers and healthcare providers. Data sharing and 
system integration are key in the new architecture. 

The specifications of the reference architecture are based 
on integration architectures that support the major Health 
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Care and Life Sciences (HCLS) standards like HL7 and FHIR. 
Integration is about connecting different systems with each 
other, but also includes transformation and routing. These 
systems often have a variety of data formats. The integration 
software will therefore need to first transform the data to help 
the receiving ICT systems “understand” and make use of it. 

4.3.4 Key lessons learned from production platforms
In studying existing platforms and their common 
challenges, we have identified five key lessons that will 
inform development of new platforms going forward.

• Access control: Health data is highly personal 
and sensitive so access control is important. API 
Management solutions are addressing these needs.

• Security: Sensitive data requires an extra focus 
on security and protection. All production systems 
employ encryption for data at rest as well as data in 
motion. Data access technologies as well as monitoring 
data usage are crucial. Security information and 
event management (SIEM) solutions to monitor as 
well as actively avoid any threats are another layer 
on top of Identity and Access Management (IAM) 
types of solutions. In addition, it is important to limit 
the impact of any data breach that might occur.

• Capacity planning. The usage and flow of data is hard to 
predict, so it is important to create a robust and scalable 
infrastructure that can react to changing demand. 
Auto scaling and automated provision of storage and 
compute make the architecture robust. This is especially 
important for systems that are not just used for research 
but also for clinical processes (precision medicine).

• Data Privacy. When patient data is used for secondary 
purposes, the data must be de-identified or anonymized. 
These techniques need to be applied to all data 
exchange mechanisms inside and outside the platform.

• Health Data Model. Sharing data between many diverse 
systems is difficult because each system may employ 
different integration formats and protocols. For data 
quality purposes, it is important to maintain a common 
data model within the platform. IBM uses the Universal 
Data Model for Health (UDMH) as the canonical model, 
and translates to and from this model, using SNOMED 
based adaptors, which works very efficiently. 

 
App connect is an IBM platform which can be 
used in healthcare. App Connect supports 
healthcare standards like HL7 FHIR, DICOM, 
CDA & CCD, IHE, and IoT connectivity, in 
addition to traditional capabilities. The platform 
allows clinicians to send and receive medical 
images, recordings, and data from medical 
journals in real time, as well as to receive data 
from medical equipment. 

4.4 ENABLING OPEN PLATFORMS 

Bjørn Næss (DIPS), contributions by Vebjørn Arntzen (Oslo 
University Hopsital), Gard Thomassen (University of Oslo)

Open IT platforms promote development & innovation better 
than single-supplier systems because they are supplier and 
technology neutral, eliminate lock-in, facilitate innovation and 
competition, and force suppliers to compete for quality, value 
and service. These traits are crucial for a rapid development 
within precision medicine and the health sector in general.

There is a general agreement today that e-health should 
be built with interoperability so that the various systems 
can exchange data with each other. OpenEHR is an open 
IT platform that meets these demands. It is currently used 
as a standard for storing data in medical records, but 
there is still a need for more focus on the definition and 
representation of clinical content. Clinical concepts are 
advanced and further work with clinical modeling is required. 

In order to have standardized and automated interaction 
between systems, we depend on developing good 
standards and protocols for message exchange, 
as well as well-defined coding systems that allow 
the registration of data in a uniform manner.

4.4.1 Efficient healthcare and research need a scalable 
platform for clinical data and metadata

To build good end-user applications and make research 
possible, we need solutions that can handle the great 
variety of systems, data sources, data definitions and 
organisational boundaries. One such solution has 
already been implemented in Germany. The HIGHmed 
project (https://highmed.org) has developed and 
deployed an open platform approach to enhance care 
and research across institutional boundaries. Hospitals 

4
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joined forces and transformed their socio-technical infrastructures from an isolated 
and function-based approach to a collaborative and data-driven one. To make this 
happen, several properties that are common in open IT platforms have to be in place:

• Governance needs to be established. The work must be anchored with all relevant 
stakeholders. The driving purpose must be to establish good framework conditions 
for continuous work with the development and management of the systems.

• The data and applications need to be interoperable across different platforms and 
implementations. An open platform achieves this when the requirements for data 
modelling are implemented and the data is separated from the applications. This will 
benefit research programs in the ETL process from primary source into the research 
data model. All structured data can be (semi-)automatically transformed to a variety of 
downstream formats 11. This is a benefit of using archetypes, which allow changes to clinical 
models while the transformation algorithms rely on the stable openEHR Reference Model.

• Portability makes it possible to write software and applications which can be 
used in other contexts. One such example is the application built by The Cancer 
Registry of Norway that provides insight based on data in the national registry to 
suggest and recommend treatment for the patient at hand. It should be possible 
to develop this kind of applications only once and run in any hospital environment 
by using standardized data definitions and APIs. An application developed for 
DIPS Arena at OUH can then later be used within EPIC at Helseplattformen.

• Separating data from applications and a specific storage layer also reduces and 
eliminates the risk of vendor lock-in on data. This is critical since data is the 
definitive value in an open health platform and an effective system can’t risk 
losing its data if the vendor changes. Separating data from applications require 
efforts on semantic modelling. This is a critical activity to generate the necessary 
knowledge to safely access data in a cross-enterprise environment. 

The eHealth standards and systems continue to evolve over time. Semantic domain 
models should be built as completely independent entities, separated from specific 
software products, solutions, or technologies, run by and for domain experts. One effective 
example of this is openEHR, which defines a formal specification and methodology for 
multi-level modelling based on archetypes which defines constraints on a reference 
model. Once archetypes are defined, they represent definite models of semantics that 
can be used for multiple purposes, including the generation of data capture forms 
in EHRs, database schemas, transformations, messages, data validation algorithms, 
data querying, etc. Archetypes enable both syntactic interoperability and semantic 
interpretability, which are two necessary components of semantic interoperability.
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4.4.2  Open health platform architecture
A platform progress away from being locked-in to 
a monolith of fixed commitments, toward an open 
ecosystem (https://wolandscat.net/2014/05/07/
what-is-an-open-platform) through: 

• Open Service Models: all specifications of the 
provided application programming interfaces (APIs) 
are openly accessible to everybody. Specifications 
include data security and privacy, electronic health 
record (EHR) management, and database queries.

• Open Information Models: All clinical models are well 
defined based on established open standards. Data 
based on these models can be reliably processed and 
computed in local and distributed environments. In 
addition, all models that are defined and reused should 
be made openly available to the community. Examples 
are SNOMED CT, openEHR, HL7 FHIR and HPO. 

• Open System Specifications: All system components 
and protocols are openly specified using licenses feasible 
for commercial and non-commercial use so that every 
component in the system can be replaced by software 
from multiple vendors or open source communities. 

Features of an open platform

Data definitions

·  Shared and open data definitions

·  Transparency on what kind of data is present

Data access

·  Shared cross domain query language

·  Well defined API

·  International standards

Applications

Data separated from applications

·  Build applications faster

·  Applications have short lifetime

·  Data has eternity

4.5 DYNAMIC DIGITAL CONSENT 

Bobbie Ray Sannerud, contributions by Sharmini Alagaratnam (DNV) 

The increased utilisation of genomic sequencing in  
Norwegian clinics is creating new practical, legal and 
ethical issues for the development of content and process 
of informed consent. To address the issues surrounding 
clinical genetic testing, DNV led several discussions with 
Oslo University Hospital’s Department for Medical Genetics 
(OUH, DMG) on the nuanced considerations associated 
with consent. This partnership published a white paper with 
a set of recommendations to serve as a starting point for 
laboratories and clinics developing content and process 
of consent management in the clinical genomic setting.

Consent is achieved through dynamic interactions, adapting 
to the needs and situation of the patient. In some cases, this 
is an ongoing process rather than a one-time informational 
session. Bridging the gap between the law and clinical 
practice so that the process of informed consent delivers its 
value is essential. Interviews with various stakeholders across 
the clinical genomics value chain suggest that despite this 
recognition, interpretation of the law for the implementation 
of consent management in clinical practice can be difficult. 
As a result, practices for obtaining consent and the 
content included in consent forms often differ between 
healthcare institutions across Norway, and even sometimes 
between clinicians and laboratories in the same hospital. 

The white paper advocates for healthcare organisations 
to develop institutional policies that enable consistent 
clinical genomics consent practices across the patient and 
sample analysis journeys. Such policies may also inform the 
patient about whether or not to go through genetic testing. 
Additionally, nationally harmonised consent approaches may 
enable advanced IT tools for sharing genetic information 
and other health data which could match the patient with 
other similar patients across not only Norway, but the world.

Further reading:

• Consent for clinical genetic testing in 
Norway – considerations to the development 
of process and consent by DNV 

• Pan-Nordic clinical consent framework 
for genetic testing by DNV

• Dynamic consent in clinical genetics: 
Implementation barriers

4
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Box 6: TSD Consent solution by Gard Thomassen (UiO) 

UiO has successfully developed and implemented a dynamic digital 
consent solution on the TSD platform in cooperation with the 
Department for Medical Genetics (OUH). The solution grants access 
by using BankID on the mobile signature solution from Digdir. 

The TSD solution uses UiO’s Nettskjema (a self-service online questionnaire 
solution) in such a way that the research project itself creates a consent 
form. TSD arranges encryption and connection to BankID, as well as 
connection to TSD’s consent solution. This is a complete self-service process 
for the researcher, and the time spent depends only on the complexity 
of the consent, which means that the consents can include several 
questions, which are treated as separate consents in the further process.  

With the design ready in 2019, the solution was developed through BigMed in 
6 months as a result of an IT platform architecture already set up with required 
authorisation, authentication and security mechanisms. This, combined with 
loose connections between the components of the IT platform, allowed TSD 
to rapidly develop a functional solution to a problem other more monolithic 
systems have struggled to develop. 
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5. Organisational frameworks 
and governance 

Organisational issues have been a common denominator 
influencing all parts of the project and remain the major area 
that needs to be addressed moving forward. We have gained 
valuable lessons and experience in organising cooperation 
between partners with different cultures and expectations.

BigMed created a well-functioning ecosystem consisting of 
different stakeholders with separate individual agendas from 
both public and private sectors with different roles and 
responsibilities working towards the same goal: to address 
the barriers of precision medicine to the benefit of patients. 

Experiences from the project show moving innovation and 
new technology from research into clinical practice is often 
problematic. 

A clear strategic goal could help all stakeholders move in the 
same direction. The simultaneous and gradual maturing in 

the different areas promote an iterative approach of testing 
and experimenting. 

Following this, we believe that rapid development of 
precision medicine in Norway could be supported by 
processes that facilitate both iterative innovation and by 
establishing organisational clear roles and responsibilities for 
moving new technology from research to the clinic.

This chapter contains reflections on lessons learned in 
the project focusing on the topics of organisation and 
governance. First, we investigate the implications needed to 
be taken into consideration, then observations on the micro 
level of innovation at the hospital and then zoom out to the 
macro level in decision methodology and societal priorities. 

5
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Sections in chapter 5

5.1  From ad hoc to adoption – a maturity model for precision medicine
5.2  Stimulating an innovation ecosystem with industry cooperation 
5.3  From innovation to implementation 
5.4  New clinical study models in the framework of precision medicine 
5.5  Precision medicine in a health economics perspective

Additional BigMed material

BigMed reports
 − Implementing NGS-based diagnostics in cancer care: Technical and organisational factors in the Nordics 
 − Consent for clinical genetic testing in Norway – Considerations to the development of process and content 
 − Germline genomic medicine: A BigMed needs analysis
 − Drivers in rapid genetic diagnostics for rare diseases in infants 
 − Clinical reporting of NGS data: A systematic Nordic collaborative, peer-reviewed benchmarking 
 − Big data management for the precise treatment of three patient groups 

Podcasts 
 − Precision Medicine into Patient Treatment
 − Health Benefits and Resource Utilisation 
 − The Key to Precision Medicine 

Recorded webinars 
 − Precision Medicine: A Health Economics Perspective 
 − BigMed-konferansen 2020: Veien til presisjonsmedisin 
 − Real-World Data, digitalisation and decentralisation of future clinical trials 

An overview of all material from BigMed is available at bigmed.no

https://bigmed.no/assets/Reports/implementing_ngs-based_diagnostics_in_cancer_care_dnvgl.pdf
https://bigmed.no/assets/Reports/consent-process-2020.pdf
https://bigmed.no/assets/Reports/bigmed-dnv-gl-genomic-medicine-needs-white-paper-2020.pdf
https://bigmed.no/assets/Reports/bigmed-nicu-seq-report.pdf
https://bigmed.no/assets/nacg-paper-2018.pdf
https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://bigmed.no/podcasts/precision-medicine-treatment
https://bigmed.no/podcasts/health-benefits-resource-utilization
https://bigmed.no/podcasts/key-to-precision-medicine
https://www.youtube.com/watch?v=dC4h51aGEAY
https://vimeo.com/469672581/59bc331c8f
https://bigmed.no/projects/rwd-clinical-studies
http://bigmed.no
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5.1 FROM AD HOC TO ADOPTION – A MATURITY 
MODEL FOR PRECISION MEDICINE 

Vibeke Binz Vallevik (DNV), Alia Zaka (Sykehuspartner) 

The history of industrialisation is full of examples of new 
technologies that initially do not deliver on their promise. 
When we invent new technologies, but continue to work 
in the old way, we cannot expect the innovations to have 
the exponential effects that we may have hoped for. 

Unfortunately, this is the pattern we observe today within 
precision medicine. In order to harness the full potential, we 
need to grow our understanding of the opportunities the new 
technology gives, and incorporate it into our system of care. 
Until we fully integrate precision medicine into our systems, 
the health economic benefits can be expected to lag. 

Pharmacogenetics is a good example of a “new technology” 
that has been integrated into an existing process. We 
have knowledge of several genomic variants and a simple 
PCR test that, administered before treatment, will reveal 
whether a particular drug will give low or no effect, or even 
adverse effects. An alternative proposed 12 way of integrating 
pharmacogenomics is to store our patient’s genomic 
variants in a register and allow an automatic cross check of 
relevant variants with the record before certain medications 

can be prescribed. This would allow a more efficient reuse 
of resources, also ensuring safe treatment of patients. 

From our experiences in BigMed we have drafted 
a model for precision medicine (Figure 6) that 
describes the different maturity levels within each 
area of our architecture: secondary use of data (data 
capture, analysis and application), infrastructure, legal, 
and organisational framework & governance.

For precision medicine to reach its full potential, we need 
supporting infrastructure to facilitate the flow and use of 
data. There is also a need for corresponding adjustments 
to our legal framework. Some actual changes to the law 
are needed, while some issues can be handled through 
clarifications of how our regulations should be interpreted. 
This is needed to align practice nationally. We need to 
redesign our decision processes to facilitate the uptake 
of new technology and encourage patient care based on 
individual patient characteristics. Most importantly, we 
need to understand where and how this new technology 
can allow us to deliver care in a different and better way.

At the first step of the model, we observed mostly ad hoc 
initiatives, locally driven by dedicated individuals. The next 
step has been locally coordinated efforts. As these efforts 

Figure 6. Maturity model for precision medicine implementation.
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BigMed

mature and become fully functional, they will be documented and monitored. 
Documented effects are a natural prerequisite before a wider systematic 
implementation. 

In the scenario of a systematic approach, we can expect clinical data 
to be captured and stored for systematic use based on the current data 
strategy. Data sharing is a good example of a systemic approach: there 
are available tools for sharing, the legal boundaries for use are clear, 
and supporting standards and ontologies are commonly used. 

In this scenario, clinicians will have access to essential data from which they 
can evaluate the statistics of outcomes for different patient segments that 
they in turn can use as a basis for decisions on treating the next patient. For 
example, they may be able to search through molecular tumor profiles from 
previous patients to find statistics for a new patient with similar characteristics. 
A process and digital tools for consent will facilitate the secondary reuse of data. 
A harmonisation between sites encompasses standardisation of data generation 
and storage; to ensure quality and similar outcomes regardless of geography.

In a system adapted to opportunity and change, we expect the gap between research 
and implementation to be bridged by a process of facilitated integration to ensure 
iterative improvements. Roles and mandates for this activity should be clear, and a 
supporting infrastructure made available. Funding mechanisms would reflect efforts 
needed to test and validate new technologies and methods before moving these into 
clinical use. The decision system for approving new technology will be balanced to 
ensure sufficient safety and a fair use of our common resources on one side, while 
on the other side not bottlenecking access to the care our patients deserve.

The Norwegian strategy for Personalised medicine 2017–2021 had an “overall aim 
to ensure coordinated building of expertise and coordinated knowledge-based 
developments in the field of personalised medicine, and to pave the way for further 
research and innovation.” 13 An updated strategy for the next period should address 
the implementation of innovations in precision medicine. A gap analysis based on 
the maturity framework could be used as a guide to set the new ambitions. 

5.2 STIMULATING AN INNOVATION ECOSYSTEM 
WITH INDUSTRY COOPERATION 

Liv Bollvåg (DIPS), contributions by Bobbie-Ray Sannerud (DNV), Anita Moe Larsen (Norway 
Health Tech), Stephen McAdam, (DNV), Odd Arild Lehne (Norway Health Tech), Kathrine Myhre 
(Norway Health Tech), Loek Vredenberg (IBM) 

The BigMed project has fostered promising new tools and innovations, thanks to 
a tight collaboration between industry partners, clinicians, and researchers.

Precision medicine is not just a technical venture, it also challenges traditional workflows 
in healthcare. Smart organisation of knowledge and data, and an open-minded approach 
free from skepticism towards public-private collaboration, are necessary for providing 
effective and safe healthcare services as the amount of new knowledge exceeds the 
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individual capacity of each party. Precision medicine 
requires us to acknowledge the need for cross-disciplinary 
knowledge and competence from both sectors.

5.2.1 Guidelines for innovation
The ideal set-up for innovation activity and solving 
challenges for better healthcare is a close collaboration 
between industry, researchers, and clinicians. Working 
within a host organisation (hospital) with a complex 
landscape of IT solutions makes it challenging to provide 
staff that can facilitate software upgrades and test-facilities. 
To work as a team, all parties contribute to build bridges 
between real world problems and possible solutions.

The first BigMed report 14 identified some important 
guidelines that needed to be in place for the 
successful development of a well-functioning system 
of public-private collaborations. These were:

• Focus on innovation in areas where good 
solutions are not commercially available.

• Address current culture of industry skepticism 
from a political and top management level.

• Acquire and test available solutions and technologies to 
a larger extent than currently practiced. 

The BigMed project has been successful in creating 
forms of cooperation where industry and clinicians work 
together towards a common goal. Moreover, it offered 
the economic incentive needed for industry to be able to 
invest in developing tools with an uncertain future benefit. 
This allowed development of a range of new technologies  
(see Box 7). This supported a collaborative environment 
in which both industry and clinicians could focus jointly on 
the clinical needs throughout the developmental phase of 
the project. 
 

«The ideal set-up for innovation activity 
and solving challenges for better 
healthcare is a close collaboration between 
industry, researchers, and clinicians» 

5
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Box 7: New tools developed in the project through industry cooperation

Variant Exchange – Sharing of interpreted genomic variants DNV, Oslo University Hospital 
(OUH), Scilife Lab/Karolinska 

Data provisioning OUH – pipeline for text extraction from EHR OUH ICT, DIPS, University of Oslo 
(UiO), Sykehuspartner (SP)

Data provisioning Akershus University Hospital 
(Ahus) – pipeline for text extraction for EHR 

OUH ICT, DIPS, UiO, SP

BigMed zone innovation platform with pipelines  
for data extraction (on RIF) 

SP, OUH ICT, IBM, DNV, DIPS

MaxManus – automatic anonymisation for free text OUH ICT, DIPS, UiO, SP

Digital consent solution in TSD OUH ICT, UiO, SP

Risk calculator for sudden cardiac death OUH, DIPS

ML: Automatic echo measurements for input 
to calculator (machine learning) 

Inmeta, OUH

NLP: Identification of patients at risk for SCD from EHR, 
identification of “syncope” to populate risk calculator. 

Akershus University Hospital (Ahus) 
& UiO Institute of Informatics, 
Language technology (IFI LTG)

NLP: Pedigree tool – Extraction from free text – family 
relations relevant for medical condition 

Ahus & IFI LTG, OUH

NLP: Interpretation of CT descriptions (validated 
with MR and CT caput-descriptions) 

Ahus & IFI LTG

Dashbord with timeline in the EHR, DIPS arena DIPS, OUH

Patient similarity classifier predictor (Netdx) OUH Oslo Centre for Biostatistics 
and Epidemiology (OCBE)

Automatic reporting tool from EHR to the cancer registry DIPS, OUH, The Norwegian 
Cancer registry

Boolean search for research articles OUH, PubGene

English dictionary for search of research articles PubGene, OUH

Research data capture directly in EHR – (ProtheCT) DIPS, OUH

Text mining from EHR for automatic population of 
Dashboard – NLP testcase for WatsonExplorer 

IBM, OUH

For a complete list of industry cooperation results in the BigMed project, see appendix. 
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Figure 7. Industry-hospital collaboration process where all parties are involved from the start.

5.2.2 Overcoming the barriers to implementation
A major limitation has been the lack of mutual 
understanding of needs, tech readiness, and process 
readiness. Overcoming this limitation represents 
a major success of the BigMed project.

One of the biggest organisational barriers to clinical 
implementation of precision medicine identified in the 
2018 BigMed report 15 was skepticism towards industry 
involvement. The report pointed to, among other things, 
a lack of tradition for cooperation and missing incentives. 
The setup of the BigMed project with a cooperation 
between academia, hospitals, and industry partners 
has been an exploration of how cooperation can be 
organized between partners with different cultures 
and expectations. Industry was involved to develop 
the ideas into sustainable commercial solutions and 
ensure an opportunity for clinical implementation. 

The process has provided many valuable lessons. 
Transparency and an understanding of each other’s 
ambition proved a key starting point. Coming together as 
one group and working together towards one common goal 
over time has built relationships on a peer-to-peer level.

While the collaboration across disciplines and sectors 
on a research level is showing results, the real challenge 
of bringing innovation into operational practice is still 
present and a hinderance to further value creation. 
With an understanding and acceptance of the different 
motivations of the stakeholders, a well-functioning 
ecosystem of trust could emerge over time.

5.3 FROM INNOVATION TO IMPLEMENTATION 
5.3.1 The implementation gap between 

research and clinical environments

Courtney David Nadeau (DNV), contributions by Eivind 
Hovig (Oslo University Hospital, University of Oslo), Anne 
Jorunn Stokka (DNV), Vibeke Binz Vallevik (DNV) 

Technologies develop on a continuum from initial 
high-risk, conceptual academic research to routine and 
appropriate use in the health system. While investigating 
NGS-based diagnostics and machine learning in hospitals, 
BigMed found major gaps between the possibilities 
of research and implementation in the clinic 16. 

This gap exists in large part due to differing incentivisation 
structures for research and for clinical work. Researchers in 
a university or translational setting are generally incentivized 
to publish in academic journals that expand scientific 
knowledge and to leverage their cutting-edge work to fund 
future research. In contrast, clinical diagnostics units are 
tasked with developing and providing robust, quality-assured 
diagnostics within a highly regulated funding and regulatory 
framework. In many cases, these disparate incentives 
create separate research and clinical infrastructures.

Much of the work needed to bring the research from the lab 
to the clinic is not directly incentivized for either academic 
or clinical stakeholders. Re-writing software packages, 
quality-vetting supply chains, risk management, process 
change management, and regulatory compliance efforts in 
most cases neither lead to high impact-factor publications, 
nor are they directly reimbursable activities for clinicians. 
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When exploring the implementation of NGS-based cancer diagnostics in the Nordics, 
BigMed found that many clinical tools were prototyped in a research setting, but 
were rarely adapted for use in a regulated hospital setting. Even in cases where 
clinical stakeholders could see the benefits of using some of these tools, they were 
not implemented because of the high cost of development and validation efforts.

Creating specific funding opportunities for operationalizing research tools (without 
the expectation of peer-reviewed publication) and promoting cooperation with 
industry partners are two mechanisms to incentivise the development of medical 
technologies. Greater clarity on regulatory and quality requirements for both clinical 
and research stakeholders could also alleviate these implementation hurdles. 

5.3.2 An agile organisational path to implementation 

Alia Zaka (Sykehuspartner), Vebjørn Arntzen (Oslo University Hospital), Vibeke Binz Vallevik (DNV) 

BigMed found that organisations with the competence and organisational 
structure to develop and maintain their own IT tools for clinical use were 
better able to move research from innovation to implementation, like the 
case of genomics laboratories with bioinformatic competence. 

In one case, the BigMed project team worked in close cooperation with all stakeholders 
to develop a solution for automatically generating colorectal cancer reports to the cancer 
registry directly from the EHR system (description in Box 8). The solution was developed 
quickly within the research project, but there was no clear pathway for implementing it in the 
hospital. It was not clear what the decision gate was nor who had the authority to advance 
the project from innovation to implementation. This resulted in unnecessary delays.  
 
There are many stakeholders in the process of implementing new tools: clinical and 
ICT departments at the hospital, the technology provider, and the regional health 
authority. Clear organisational processes and mandates, including a budget for 
testing and validating new tools, are needed to bridge the implementation gap. 

Allowing different parts of the organisation to autonomously develop, test, validate and 
implement incremental improvements within a set of frames – instead of a hierarchical 
model – could shorten the time spent to move from innovation to implementation for 
many projects. Teams need to be able to pivot as they obtain new knowledge and 
collaborate to overcome new barriers. An agile project management style is well suited 
to pave the way for precision medicine with the ultimate goal to benefit future patients. 

«An agile project management style 
is well suited to paving the way for 
precision medicine with the ultimate 
goal to benefit future patients» 
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BigMed use case  
A solution for automated 
reporting from the hospitals’ 
EHR to the Norwegian 
Cancer Registry
Almost 100,000 cancer reports are submitted to the Norwegian Cancer 
Registry every year. On average, healthcare professionals spend 10 
minutes on each case completing a form of structured variables. The 
clinician needs to open an external web portal service operated by the 
Norwegian Cancer Registry and manually enter the data. What if we 
could retrieve such variables directly from the EHR, rather than having 
to repeatedly enter all the data by hand each time it needs reporting? 

BigMed tested NLP solutions for automatically extracting structured 
parameters on tumor characteristics from clinical text, in addition to 
creating a solution for automatically sending a structured form from the 
EHR to the cancer registry. This will cut the clinicians’ time spent on cancer 
reporting in half. It will also allow for re-use of the parameters and avoid 
extra barriers logging into different systems. Reducing the number of 
duplicated data from manual registration will in turn reduce the risk of errors.

A solution was designed based on open EHR archetypes, allowing for 
scalable implementation process starting with the colorectal cancer module 
while continuing to develop a data structure for other types of cancer.

Box 8

5
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Box 9: Three principles supporting agile management  

In the Age of Agile, Denning summarizes the principles for agile 
management through three “laws”: The law of the customer, 
the law of the team and of the law of the networks 17. 

Patient needs 

The law of the customer states that the goal must always be to increase 
customer value. In a state funded hospital setting, this could translate to 
increasing patient health value rather than having a department budget 
focus. Similarly, value-based healthcare 18 has been introduced as a concept 
to steer organisations in this direction through financial incentives.

Autonomous teams 

The law of the team emphasizes the need to allow for autonomous 
teams that operate within a certain mandate to optimize customer – or 
patient – value. The management culture needs to allow for the power 
of decision to lie with the people who have the best prerequisite to make 
that decision, no matter what level in the organisation they are.

Non-hierarchical cooperation  

The law of the network points to the need for people to interact horizontally on 
a needs-based principle rather than follow strict hierarchical lines of command. 
We need to develop our organisational culture moving from the old fashioned 
bureaucracy where decisions are made by persons high up in the hierarchy, 
into an organisation with autonomous and efficient teams that allow horizontal 
networking of decision making to happen in the level of most competence. 

5.4 NEW CLINICAL STUDY MODELS IN THE 
FRAMEWORK OF PRECISION MEDICINE 

Anne Jorunn Stokka (DNV), Karen Irgens (DNV) 

Randomised clinical trials (RCTs) where patients are recruited and monitored under strictly 
controlled conditions are considered the gold standard for clinical research, and are used 
as evidence for regulatory decisions. In this design, subjects are randomly assigned to 
either an experimental group receiving the study intervention, or a control group receiving 
placebo or standard care. Although the RCT probably represents the best available 
standard to generate evidence, this design is challenged by new innovative study models 
incorporating biomarker expression, genetic profiles, technology and digital tools. 

A challenge with biomarker and genetic trial stratification could be small 
sample populations in the study. RCT can also be limited by a recruited study 
population that might not represent the real-world setting. These elements all 
make downstream health technology assessments (HTA) more complex.
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Precision medicine, decentralisation, and the digitalisation of health care, together 
with an increased focus on patient-centered care represents a new era of clinical 
research and contribute to the ongoing paradigm shift in clinical trials. In this section 
we will focus on the contemporary drug development landscape. We will discuss 
innovative trial designs, digital platforms and the magnitude of real-world health 
data (RWD) that is analyzed to generate real-world evidence (RWE) to be used 
for decision making. This report does not attempt to present an exhaustive list of 
different clinical trial models, but rather focus on a few models and elements that 
are believed to have a strong impact on shaping current and future trial design.

5.4.1 Precision medicine in cancer – innovative study models
Today, the majority of oncology trials are designed to enroll eligible patients with specific 
biomarkers or genetic aberrations. Development of precise diagnostic tools allows for 
recruiting a more tailored patient group, moving away from the “one size fits all” thinking. 

The main challenge with these trials is small study cohorts that challenge statistical power 
and limits robust clinical evidence. On top of that, many trials do not contain an active 
control arm in the study, which makes it even more complex to assess clinical outcomes. 

Basket and umbrella trials are innovative study models that have been 
developed under a master protocol framework. So far, such master protocols 
have not been well established in fields outside of oncology 19, 20. 

In a basket trial, a single drug is tested in different cancers that all express the 
same biomarker or have the same genetic aberration, independent of histology 
location. In contrast, an umbrella trial is designed to test several different drugs 
in one type of cancer with multiple molecular sub-groups. These designs allow 
broad evidence generation across multiple cancer types and molecular aberrations 
due to extensive diagnostic testing. A few case examples of ongoing trends in 
the oncology precision medicine clinical trial landscape are discussed below.

5.4.2 Histology agnostic indications – basket trial design
During the last year, two Neurotrophic Tyrosine Receptor Kinase (NTRK) 
gene fusion inhibitors were approved in the EU with histology independent 
indications, i.e. their use is based solely on a genetic aberration and the 
tumor site of origin in the body is not taken into consideration 21, 22. 

The efficacy and safety of these two medicines were studied using a basket trial design 
and included several different tumor sites. This was a small revolution in regulatory drug 
approval as it was the first time in Europe a medicine was granted market authorisation 
based only on the presence of a biomarker. Clinicaltrials.gov lists several similar ongoing 
basket studies in oncology, particularly solid cancer, so it is expected that more 
drugs with histology agnostic indications will reach regulatory submission soon. 

These NTRK inhibitors have paved the regulatory way for this type of clinical registration 
study and represent a new paradigm for national HTA and reimbursement discussions 
because available efficacy and safety data at the time of approval is very sparse. 
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5.4.3 The drug rediscovery protocol (DRUP) – combined basket and umbrella design 
DRUP is an innovative, combined basket and umbrella design to facilitate the 
expanded use of existing anticancer drugs outside their approved indication 23. 

The combination of umbrella and basket design creates opportunities for including many different 
mutations and approved medicines in the study. The medicines can then be used in a range of 
combinations outside their regulatory approved indications to allow for individualised patient 
treatment. In the DRUP study, 34% of included patients reported clinical benefit by defined criteria 24.

There are several similar initiatives in the EU, including IMPRESS Norway (IMproving public 
cancer care by implementing PREciSion medicine in Norway). Impress is coordinated from 
Oslo University Hospital and aims to reach out to all eligible cancer patients in Norway through 
a national tumor board where all hospitals can refer patients 25. Generally, these studies enroll 
patients with advanced cancer who have exhausted all available treatment options. 

5.4.4 Technology platforms and decentralised clinical trials
In a decentralised clinical trial, study participation is facilitated from the patient’s home or in their 
local communities. 

Physical study site visits are replaced by telemedicine or mobile/local healthcare providers (HCPs), 
and researchers capture data remotely through use of mobile technologies and wearables. A fully 
virtual (site-less) trial allows the patient to be home-based at every stage of the clinical trial 26. 

Such trials are not feasible for all types of studies or disease areas and will in general be 
most suitable for diseases that are not life-threatening. Many trials need to perform on-site 
visits like MRIs, biopsies, and other assessments that cannot take place at a patient’s home 
or local community. For these latter trials it may be possible to exchange some physical 
visits for virtual appointments, referred to as hybrid trials or approaches. A hybrid trial is 
traditionally defined as a clinical trial that includes both traditional and pragmatic clinical 
trial elements 27. In contrast to a randomised clinical trial, a pragmatic trial is designed 
to show the real-world effectiveness of the intervention in broad patient group 28. 

Typical elements that are part of decentralised trials are remote trial recruitment through 
social media or use of digital tools, nurse visits at home, use of telemedicine/video consultation, 
digital data capture from devices or wearables, and electronic capture of Patient Reported 
Outcome Measures (PROMS)/ Patient Reported Experience Measures (PREMS) data. Using 
technology for data collection can provide more granular day-to-day details compared 
to traditional trials where data are collected at specific and selected time points. 

Mapping during this project period shows that decentralised and virtual trials in general 
have higher recruitment rates, better compliance, lower drop-out rates, and are conducted 
faster than traditional clinical trials. Manual processing at the study sites or at trial 
sponsor’s end is reduced as the data is collected directly from the digital devices. 

Another important element of decentralisation is the possibility to include a more diverse 
patient population as barriers such as long-distance travel, physical impairment, age or other 
limitations is no longer is preventing trial participation. In conclusion, decentralisation is about 
moving towards a patient centric trial design where technology is designed around the patient. 
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5.4.5 Use of real-world data (in clinical research) to generate real-world evidence
The European Medicines Agency (EMA) defines RWD as “routinely collected 
data relating to a patient’s health status or the delivery of health care from 
a variety of sources other than traditional clinical trials29”. RWE, on the other 
hand, is the clinical evidence that can be derived from analysis of RWD.

In many cases a market authorisation for a new medicine in the EU is granted with limited 
clinical evidence due to small patient groups in the study, particular in cases where the new 
intervention targets a rare disease with an unmet medical need and/or where the intervention 
is linked to expression of a biomarker. In such cases, regulatory approval may be granted with 
less outcome data, and more flexibility is needed to support interim funding to ensure early 
access to the new intervention while further RWE is collected in the post-approval setting30. 

Data analytics, digital tools and digital transformation is one of six strategic focus areas in 
the EMA network strategy to 2025. Here, EMA emphasizes the importance of adapting to 
the rapid global evolution of digital healthcare systems and the use of digital technologies 
to generate RWE to fill the evidence gaps that exist between outcome data emerging 
from a clinical trial designed for regulatory approval and clinical evidence needed by 
downstream stakeholders including HTAs, payers, and ultimately clinicians and patients31. 

Feedback from stakeholders also raised the issue related to lack of local regulatory 
guidance on how RWD can be utilised as decision basis for health economic evaluations 
and reimbursement decisions. One step towards this is a draft guideline on registry-
based studies, published in September 2020, by the EMA. The draft guideline aims 
to optimize the use of registry-based studies as a source of real-world evidence 
in the context of benefit-risk evaluation of medicinal products in Europe32.

5.4.6 Status in Norway 
Norway is in a unique position with many and data-rich health registers. Unfortunately, 
extracting data from these registries can be a cumbersome and timely process. In addition, 
these registers have varying data quality and, in some cases, incomplete records. The 
Directorate for e-health established the Helsedataprogrammet in 2017 with the goal 
to simplify and improve the use of Norwegian health data. Helseanalyseplattformen 
(HAP) as an ecosystem for analysis of health data will be established as part of 
this program. The goal of the platform is to simplify access to and enable analysis 
across the different health registries, without compromising on data security. 

The number of industry-sponsored clinical trials has dropped significantly in Norway 
over the past few years 33. As a measure to reverse this negative development, the 
Ministry of Health and Care Services (HOD) launched an action plan for clinical trials 
in 2020 (Handlingsplan for kliniske studier). In addition, more than 60M NOK was 
granted in the State budget for 2021 to back this plan and to increase the focus on 
precision medicine and innovation. This included establishing NorTrials, which is a 
public-private partnership for clinical trials. National initiatives such as Impress and 
the diagnostic platform InPred (Infrastructure for precision diagnostics) are important 
to keep up with the rapid developments in precision medicine, and digital elements 
are gradually being implemented in patient care and clinical research in Norway.
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As mentioned earlier, even with limited data available at 
submission, new technologies within precision medicine 
(such as NTRKs inhibitors) have received regulatory 
approval in the EU. However, the following local health 
economic evaluations and reimbursement discussions 
proved difficult. The Norwegian reimbursement 
system for new health technologies is not set up to 
handle treatments within precision medicine. 

To meet this new era of highly specialised treatments, 
in 2020 the Ministry of Health and Care Services 
directed the hospitals to “under the leadership of 
Helse Midt-Norge RHF, study and implement schemes 
for temporary introduction and reassessment of new 
methods in Nye Metoder to facilitate the introduction 
of personalized medicine in the service”.

5.4.7 Covid-19 – a catalyst for decentralised elements
The trial models discussed above, with focus on 
precision medicine and decentralisation, will all be part 
of shaping the future of clinical research. Technology 
is enabling decentralisation of trials and these will play 
an increasing part of the future alongside traditional 
site-based clinical trials. The ongoing covid-19 outbreak 
has been a catalyst for decentralised elements, and 
it is expected that, post-pandemic, trial innovation 
will continue along this path of innovation. 

5.5 PRECISION MEDICINE IN A HEALTH 
ECONOMICS PERSPECTIVE 

Eline Aas (University of Oslo), contributions by 
Monica Gomez (University of Oslo)

Worldwide, Norway has been a pioneer in explicit guidelines 
on priority settings in healthcare. The process started in 
1987 and has been continuously revisited. The introduction 
of precision medicines challenges current guidelines. 

5.5.1 Priority settings in healthcare 
The first priority settings in 1987 were based on two 
pillars: severity and health effect of new treatments 34.  
In 1997, use of resources was introduced as a third pillar 
indicating cost-effectiveness (balancing costs and health 
outcome) as a guiding principle35. In a revision of the 
priority settings in 2014, which is the current guidelines, 
health effect and resource use (cost-effectiveness analysis) 
were set as the two first pillars, moving severity to be the 
third, measured by absolute shortfall and linked to the 
threshold value for an incremental health effect 36, 37, 38.

In 2007, the Norwegian Medicines Agency (NOMA) was 
the first institution in Norway to apply the explicit priority 
settings for drugs included in the National Insurance 
Scheme 39. Decisions related to reimbursement of 
medicines in healthcare institutions (hospitals and nursing 
homes), medical equipment, new surgical procedures, and 
organisational changes were not subject to guidelines. 
In the past decades, several organisational changes 
have been initiated to ensure that decisions are based 
on the same principles for the entire health sector40, 41. 

The National System for Managed Introduction of New 
Health Technologies within the Specialist Health Service 
in Norway (Nye Metoder) was established in 2013 to: 
ensure that harmful and ineffective treatments do not 
enter the market, establish a knowledge platform based 
on health technology assessments (HTAs), take resources 
into considerations, and finally establish systems for 
implementation 42. As a result, NOMA started to evaluate 
reimbursement decision for drugs in hospitals. The final 
decision on whether the new drug used in hospital should be 
financed is taken by a board (Beslutningsforum) consisting 
of the four CEOs from the regional health authorities. 

The latest discussion on priority setting is related to 
interventions initiated in the primary health service. The 
principles from the previous report (health outcome, 
resource use, and severity) were suggested to be continued, 
but with a proposal to include coping as an additional 
outcome measure to be taken into consideration.  

5.5.2 Cost-effectiveness analysis in precision medicine
In economic evaluations, the net present value (NPV) 
of all relevant (often long-term) health outcomes and 
costs of alternative strategies are calculated 43, 44.  

The two most common types of evaluations are cost-
effectiveness analysis (CEA) and cost-utility analysis (CUA). 
Both measure the health outcomes in natural units, the 
latter in quality-adjusted life-years (QALYs). CEAs are used 
to inform population-level decisions, but are not aimed at 
directly informing individual-level decisions. The evaluation 
of each strategy is represented by the incremental cost-
effectiveness ratio (ICER). When only two alternatives are 
compared, the ICER is defined by the incremental costs 
(differences between the new treatment and standard 
of care) relative to incremental health outcomes (differences 
in health outcomes between the two strategies). 
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In a CUA, the ICER expresses cost per QALY gained. If the 
incremental cost is negative (new treatment cost saving) 
and yields greater health outcome, the new treatment 
is considered a dominant strategy. If, however, the cost 
of the new treatment is higher than standard of care 
and yields smaller health outcome, standard of care is 
the preferred treatment option. In a situation where the 
new treatment is more costly and yields higher health 
outcome than standard of care, the preferable strategy 
will depend on how much a QALY gained is valued by the 
decision-maker, often referred to as the threshold value.  

In the context of evaluating costs and health outcomes, 
decision-analytic modelling (simulation or mathematical 
models) is the preferred approach and the standard 
method in application to NOMA. An advantage of 
modelling is the ability to synthesize available evidence 
(e.g., RCTs, observational studies, registry data) from 
multiple sources and extrapolate data beyond the time 
horizon of studies. As part of an economic evaluation, both 
parameters and structural uncertainty have to be addressed. 
Identifying uncertainty, expressed as the likelihood of 
a new treatment being cost-effective, is important to 
inform reimbursement decisions. Decisions made by 
NOMA and Beslutningsforum reveal that uncertainty is 
an important argument for not reimbursing a new drug. 

Parameter uncertainty stem from estimation of model 
parameters that are inherently uncertain, such as the 
probability of experiencing a specific event (such as disease 
progression and death) or the accuracy of a diagnostic 
test. When incorporating multiple sources of data, these 
parameters may take a range of different values, which 
should be accounted for when evaluating strategies. 

To assess the impact of parameter uncertainty, all 
parameters are varied simultaneously by assigning 
predefined probability distributions (e.g., beta, gamma) 
to each parameter and multiple sets of parameter values 
(referred to as probabilistic sensitivity analysis, PSA) are 

sampled. While the impact of structural uncertainty typically 
is tested by different model assumptions, which often is 
related to applying different parametric specifications 
on progression free survival and overall survival (such 
as Weibull, log-normal and log-logistic). These two 
types of uncertainty are important to show decision 
uncertainty and to guide reimbursement decisions. 

With precision medicine, the standard framework 
described above has two main shortcomings that needs 
to be addressed in the future before it can properly guide 
reimbursement decisions. Firstly, current guidelines are 
based on effects and costs for a given patient population, 
founded on evidence from randomised trials. As treatments 
are becoming more and more tailored, efficacy data could be 
derived from non-randomised controlled trials. Hence, new 
guidelines need to include how efficacy should be measured 
to adjust for potential selection bias, where synthetic control 
groups is one example of a possible method. Second, new 
methods on how to handle uncertainty around estimates 
in small cohorts of patients have to be developed. When 
small numbers of observations mean that there is not 
sufficient evidence to assign distributions to important input 
parameters, the standard methods of probabilistic sensitivity 
analysis must be combined with additional methods to 
account for the uncertainty around efficacy and safety. 

In addition to the challenges related to estimating cost-
effectiveness in precision medicine, a review of alternative 
financing systems is needed because the current system 
only has two decision options: yes or no. Managed entry 
agreements should be considered, not only in precision 
medicine, but in general to better combine the information 
from the uncertainty analyses with the decision. For 
instance, a conditional decision option (for instance to wait 
for additional information on the efficacy from an ongoing 
trial) should be explored. Further, a discussion of public-
private partnership in testing new drugs is also warranted. 

«If the incremental cost is negative and yields 
greater health outcome, the new treatment 
is considered a dominant strategy» 
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BigMed

BigMed’s legal team has been involved in all stages of the development of precision 
medicine tools, from idea to deployment. The early and consistent involvement of 
legal resources has enabled us to design solutions that fit the regulatory requirements 
of today and allowed for early identification of barriers to implementation. 

The work has been carried out in three major areas: 

• Navigating within the regulatory landscape of today
• Identifying where regulations need modification 
• Suggesting new forms of regulation 
• Establishing legal networks and the Nordic Permed Law (NPL) 

The BigMed legal team established a network of legal practitioners from all relevant 
stakeholders. This diverse team ensured an increased awareness of the issues, an increased 
consensus of interpretations, and initiated some of the necessary changes to regulations. 

The emphasis of the legal work in BigMed was on cooperation and involvement. This culture 
was open about new legal issues that are arising along with changes in medical practice and 
the field of healthcare. The legal work continued after the conclusion of BigMed through the 
established network Nordic Permed Law. Section 6.1 in this chapter summarizes this work. 

After the General Data Protection Regulation (GDPR) was implemented, many 
discussions arose around privacy and the use of healthcare data. There is a need for 
clarity in interpreting existing laws. For instance, how can we balance the obligation 

6. Legal and ethical framework 
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to provide state-of-the-art healthcare services while 
safeguarding patient privacy? A particularly important 
discussion in the BigMed project was about sharing of 
genomic data. This chapter includes a section evaluating 
the anonymity of interpreted genomic variants. 

Computational risk and trust in AI are major issues when 
applying machine learning in a clinical context. The last 
section of this chapter focuses on the regulation of clinical 
decision support software and lab developed tests through 
the coming Medical Devices Regulation and the In-Vitro 
Diagnostic Medical Devices Regulation in the EU, including 
reflecting on ethical guidelines for trustworthy AI. 

Box 10: State of the art healthcare 

In this chapter the phrase “State-of-the-art 
healthcare” or “sound and proper healthcare” 
refers to what is known as forsvarlighetskravet 
or forsvarlighetsplikten in Norwegian. This 
is a fundamental principle that permeates 
Norwegian health laws (see e.g. the Health 
Personnel Act §§ 4 and 16 and the Specialist 
Health Services Act § 2-2).  

Sections in chapter 6

6.1 Legal reflections to facilitate a data driven healthcare
6.2 Evaluation of anonymity with the purpose of sharing genomic data 
6.3  Ensuring safe application of diagnostic tools – computational trust and regulations

Additional BigMed material 

Relevant BigMed reports
 − Befring: Persontilpasset medisin
 − Befring and Sand: Kunstig intelligens og big data i helsesektoren
 − Consent for clinical genetic testing in Norway – Considerations to the development of process and content 
 − Big data management for the precise treatment of three patient groups
 − Report: BigMed-konferansen 2019: Rettslige reguleringer av persontilpasset medisin 
 − Clinical Decision Support Software Regulatory landscape in Europe from May 26th 2020 
 − Clinical Sequencing, Regulatory Frameworks and Quality Assurance for NGS-based Diagnostics 

Podcasts 
 − Legal issues

Recorded webinars 
 − BigMed-konferansen 2020: Veien til presisjonsmedisin 

An overview of all material from BigMed is available at bigmed.no
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https://www.gyldendal.no/faglitteratur/jus/juridiske-fag/kunstig-intelligens-og-big-data-i-helsesektoren/p-825763-no/
https://bigmed.no/assets/Reports/consent-process-2020.pdf
https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://bigmed.no/assets/Reports/bigmedreferatnov2019(2).pdf
https://bigmed.no/assets/Reports/clinical_decision_support_software.pdf
https://bigmed.no/assets/Reports/clinical-sequencin-g_regulatory-frameworks-and-quality-assurance-for-ngs-based-diagnostics.pdf
https://bigmed.no/podcasts/legal-precision-medicine-life-science
https://vimeo.com/469672581/59bc331c8f
http://bigmed.no
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6.1 LEGAL REFLECTIONS TO FACILITATE A DATA DRIVEN HEALTHCARE 

Anne Kjersti Befring (University of Oslo), contributions by Randi Borgen (University of Oslo), Inger 
Johanne Sand (University of Oslo), Gjertrud B. Mageli (Oslo University Hospital) and Oda Bakken  
(Oslo University Hospital) 

6.1.1 Method and key findings
In order to maintain a high level of involvement of important stakeholders that influence 
both the regulation and how it is interpreted, BigMed’s legal team arranged seminars, 
conferences, and other discussion arenas, with the following specific desired outcomes:

• Close collaboration between hospitals and academia
• Broad involvement of health law professionals
• Establishment of national and international networks
• Cross-discipline cooperation 

Several new legal issues were identified through these interactions. These 
include consent in the contexts of healthcare, research and data processing, 
the storage of health data for use in healthcare and research, the use of artificial 
intelligence and big data, and the access to and ownership of health data. 

Clarification of facts 
Identifying and analysing legal issues require understanding of both the context that  
current legislation was designed for, and the new reality that the legislation must take  
into account going forward. 

To ensure that current laws are correctly applied and future laws are properly 
developed, it is crucial to clarify the potential benefits and the consequences 
of using new technology. This includes not only to new knowledge and 
technology, but also the consequences of new events such as the global Covid-19 
pandemic. The way that facts are evaluated in a legal context is a core aspect 
of legal methodology, as Befring discusses in her doctoral dissertation 45.

Ambiguities can arise in the legal framework when the context has changed radically 
since the law was written. For instance, new possibilities that come with technological 
advancement can lead to new questions related to values and ethics which the legislature 
never considered. Describing and analysing changed conditions and preconditions is 
of great significance for legal analysis and includes both the application of the legal 
dogmatic method and the judicial/legal policy analysis. Another important issue in 
health law is how EEA regulations and other international laws interact with national 
laws within areas of law where the context changes rapidly on a global level.

The development of the legal dogmatic method is described in chapter 2 of 
“Personalised Medicine – Legal Perspectives” 46 and in chapters 1 and 2 of the book 
“Artificial Intelligence and Big Data in the Health Sector – Legal Perspectives” 47. 

Identification and analysis of “common denominators” in health law 
BigMed sought to identify “common denominators” and fundamental principles and 
values which influence legal questions in modern digital medicine. These considerations 
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are particularly relevant in the application of new 
technologies and identifying them is necessary in 
order to raise and analyse new legal issues. 

The following reflections must be considered: 

• Changes to conditions from the time the law was 
designed must be clarified as a starting point for 
application and assessment of health law and policy.

• How changes to conditions might change the 
premises that current legislation was based on, and 
may reveal a need for new or additional legislation. 

• How we interpret and develop laws to regulate 
artificial intelligence and big data within the health 
sector by identifying, developing and reflecting on 
the basic principles, values and considerations that 
can be defined as “common denominators”.

6.1.2 Changes in the understanding of legal 
sources precipitated by digitalisation

Medical and technological development requires extensive 
use of patient data in completely new ways. This requires 
looking at the health legislation with new eyes. Norwegian 
health legislation is a fragmented landscape. Changes 
in the actual circumstances or premises for providing 
modern medicine require corresponding changes in the 
regulation of health care, health data and new technology. 

The division between health research and clinical practice 
makes it challenging to introduce certain elements of 
precision medicine. As healthcare and health research 
are increasingly digitised, the ability to maintain a high 
quality of healthcare services, both when treating each 
patient and when developing new treatment methods, is 
largely becoming dependent on the ability to store and 
utilise patient data. Health law must also take into account 
aspects of human rights and international obligations.

Using patient information and the patient record  
as a basis for knowledge
When a patient’s health information and medical 
records are used as the basis to support decisions of 
diagnosis or treatment for other patients, they change 
into a more generic source of medical knowledge. 

Patient data becomes the basis for the patient’s own 
treatment, and is also used for developing treatment for 

others. An “exchange relationship” is formed between 
the public and the health services, i.e. medical knowledge 
and knowledge used by the health sector are drawn from 
patient journals. One patient’s data points will benefit the 
next, and so on. Data is constantly being generated, and 
these are of great scientific and commercial value. The 
ability to compare, analyse and draw conclusions from a 
large dataset, drawn from multiple patients’ experiences 
(often massive numbers, in the case of big data) can 
be critical to providing “state of the art” healthcare. 

Using the patient records as a basis for the development 
of algorithms can lead to more precise diagnoses and 
better care. At the same time, a fundamental prerequisite 
for providing sound and proper health services is that the 
public can trust that their medical information will be kept 
confidential. Health services must ensure that the patients’ 
confidentiality is maintained when patient records are 
used in new ways in the health service. In cases where the 
patient data cannot be anonymised in the GDPR sense, the 
identity of the person must be protected in a different way.  

Unclear regulations regarding healthcare, processing 
of health data and supervisory authorities
There is some ambiguity in the current legislation that 
regulates processing of health data. The legal regulations 
are fragmented on international, European and national 
levels. Many of the regulations Norway operates under 
today were adopted in a different environment. The arrival 
of new technologies has changed the function of data and 
turned the course of treatment into elements of research. 

The two fundamental principles: State-of-the-art healthcare 
(see Box 10) and confidentiality, are of great importance as 
the basis for health regulations in a situation with increasing 
degree of fragmentation of the legislation and of supervisory 
responsibility. For example, determining whether the 
Norwegian Board of Health Supervision (Helsetilsynet) or 
the Data Protection Authority (Datatilsynet) should decide 
whether a kind of processing of patient data is necessary 
to fulfill the duty of providing sound and proper healthcare. 
The requirement for best medical practice is of utmost 
importance when determining what data is collected and 
how it is processed, stored, documented, and used.

There is a need for legal clarification of who has authority 
for supervision and enforcement of these regulations. 
Currently this is just as fragmented as the legislation and 
split between the Norwegian Board of Health Supervision 
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and the Norwegian Data Protection Authority. If the 
Data Protection Authority is to supervise health services 
based solely on the general provisions of the GDPR and 
the Patient Records Act, without also considering the 
specific responsibilities that pertain to health law, or the 
connections between these regulations, errors may occur 
during treatment that present high risks to patient safety. 

There needs to be a greater understanding around how 
the legal duties across legal disciplines are tied together, 
and how they can be in conflict with one another in 
the processing of personal data. It must be clear that 
establishing costly and bureaucratic procedures meant to 
provide oversight and control, may also weaken the ability 
to share patient data quickly when necessary, and increase 
the risk associated with some areas of the patient care. 

Patients as well as research subjects: the processing 
of personal health information is inherent to clinical 
research
Because modern medicine is under constant development, 
in many cases patients also become subjects for clinical 
research. This raises questions of patient rights and 
clinicians’ obligations toward the patient. The regulation of 
healthcare, medical research, and processing of personal 
data are oftentimes primarily regulated within different sets 
of laws which can overlap and interfere with each other. 

For example, when algorithms are developed in the course 
of a clinical trial or other research based on big data, they 
should also become available for use by the healthcare 
system. The same applies to storing and processing of 
genetic variants that are collected for medical science 
purposes and can be needed to diagnose individuals. 
Interpretation and sharing of genetic variants not only 
contribute to better and more precise diagnosis and 
treatments, but also to building new knowledge about 
the human genome outside the scope of research. Due 
to technological advancements and new possibilities 
to process and share genetic data, building knowledge 
about our genes has become an integrated part of the 
everyday life of laboratories and a part of how they 
provide healthcare and perform quality assurance.  

Unnuanced categorisations of data are not sufficient 
Evaluation of sensitive data will vary based on the 
context in which it is processed. The duty of care 
principles include both protecting human beings, 
the uses of personal data and biological material. 

The patient must be sure that confidentiality will be 
maintained when their personal information is handled. 

Within health law, the division between “personal data”, 
“health data”, “genetic data”, and “anonymous data” are 
not enough to capture all the nuances needed to process 
data in the precision medicine era. There should be 
more nuanced and specific regulation for how to use 
different types of health data within different contexts. 

After further considerations, one conclusion is that 
medical information can be handled differently in 
different situations, depending on the reason it is being 
used. Roughly separating different types of sensitive 
data may be insufficient according to the standards of 
State-of-the-art healthcare and confidentiality. It must 
be possible to block some information while immediately 
sharing other information. This highlights the need for a 
more nuanced and specific regulation of how health data 
can be used and processed within different contexts. 

A good example of this is the discussion surrounding 
different types of genomic data. Genetic analysis and 
the interpretation of genetic variants are increasingly 
used in medical diagnostics and treatment because of 
precision medicine. Individual genetic variants and their 
interpretations are not only relevant to the individuals 
who have it in their genome, they also provide important 
knowledge about human genetics in general. Hence, 
health law must be designed in a way that regards genetic 
data as both. This shows how the nature of information 
gained from providing health services can be changed 
from personal data to data used in medical science, and 
how the knowledge gained by interpreting genetic variants 
must be shareable in order to make correct diagnoses. 

6.1.3 Requirements for legal consent 
and the standard of equality

A need for new consent schemes to facilitate  
precision medicine 
A key finding of BigMed is that emphasizing the patient’s 
ability to provide valid consent can lead to complications, 
considering that the patient has a right both to protect 
oneself from certain information (the right not to know) 
and to receive healthcare. This is particularly important 
in relation to genetic screening, since such testing can 
reveal a lot of information that the patient may not want 
to know. Thus, a requirement to receive all the information 
in order to provide a valid consent creates a conflict.
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This may lead to situations where patients who cannot provide valid consent 
receive a lower standard of medical care than those who can. These patients 
may also miss out on opportunities for inclusion in clinical trials. 

Another key finding is the complications resulting from consent being regulated differently 
for providing health care, health research, and to processing of personal data. As health 
care becomes more and more data-driven and increasingly relies on technological 
tools that require extensive use of personal data, it is crucial to ensure that healthcare 
providers have sufficient legal basis to process the data that is necessary to provide 
State-of-the-art healthcare. In order to comply with the GDPR, health institutions have 
to explain a legal basis for their processing. If they do not find a sufficient legal basis in 
national health law for the processing in question, they must turn to the GDPR, which 
leaves them with no other option than to obtain valid consent, which may be difficult. 48

There are challenges to detailing broad consent for research while at the same time fulfilling 
adequate guarantees for healthcare. Furthermore, there is a discussion about distinguishing 
between valid consent in a research-ethics sense, as defined by the Health Research Act 
and the Declaration of Helsinki, and consent as a condition that must be in place in order 
to process personal data in accordance with the GDPR. Even if consent is granted to 
use the data in research, as required by the Health Research Act and the Declaration of 
Helsinki, questions arise about whether the same health data can be used for treatment. 

The interpretation of the GDPR has been that it supersedes all other standards, 
even though its relevance is limited in the context of healthcare and medical 
research 49. This does not conflict with the national legal requirement that both 
healthcare and participation in medical research or trials should be voluntary.

The criteria for prioritisation need to be revised
We have seen that the development of technology may lead to more risk and imbalances 
in patient care, despite the norm of equality. This affects the criteria on which medical 
decisions are made, how they are used in laws for prioritisation, and the clear divide between 
healthcare and research. Changes to the factual basis and fundamental principles can justify 
developing rules regarding changes to the delineation between healthcare and research.

The right to healthcare may increasingly include preventive treatment and a proactive 
process in providing healthcare as genetic science is developed and applied in 
practice. Healthy patients may have a significant need to act to prevent serious future 
illness 50. Preventative care can also lead to a more efficient healthcare system. New 
understanding of genetics, along with cheaper and more widely available methods 
and tools will make genetic screening much more widespread. The healthcare 
can become “circular” when advances in genetic knowledge provide increased 
opportunities to correct previous diagnoses and change the course of treatment.

New knowledge in the field of genetics may identify pathogenic variants that 
were once thought to be harmless. This raises the question of how often 
laboratories will, or should, re-analyse a patient’s sequential data and report 
on new results. The right not to know may also be significant for many people, 
presenting difficult ethical dilemmas for healthcare professionals.
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Knowledge of genetic predispositions creates new 
issues connected to the equality principle in health 
services, as does the way costs are used as an 
instrument for prioritisation. New questions arise 
around the requirements of informed consent as this 
contradicts the patient’s right to choose “not to know”, 
and questions arise in relation to how genetic variants 
of uncertain significance should be used and stored. 51

Artificial intelligence, machine learning, and clinical 
decision support tools
Machine learning and the use of clinical decision 
support tools in patient care require structural changes 
within the health sector and adaptations in the law. 

Artificial intelligence and machine learning can use health 
data to provide new services and improve the existing ones, 
but their use and development is completely dependent on 
access to data. As the need for both primary and secondary 
use of data grows, healthcare and health research will 
become more and more intertwined. Furthermore, with 
digital tools and decision support tools, health data will 
serve additional purposes beyond providing healthcare. 

Artificial intelligence requires a new foundation for 
viewing the structural and consensual nature of health 
data, and the many factors connected to this must be 
considered in any new legislation. Large amounts of 
data are used in medical genomics that bioinformatics 
tools (more or less based on AI-methods) can use to 
make diagnoses quickly and correctly. These may be 
linked to global search engines on the internet and may 
process health information or collect metadata in such 
a way that they act as a register of personal data. 

The challenge is categorizing this type of register 
in light of the fact that there is a need to view 
healthcare and medical research within the same 

context while maintaining the principles of privacy, 
confidentiality, and State-of-the-art healthcare.

There is a need for a legal definition of decision support 
tools that make fully automated individual decisions. This 
is in part because it can be difficult to distinguish between 
automated processing of a doctor’s decision-making basis 
and fully automated decisions. Development and training 
of machine learning algorithms in health research must be 
seen in connection with their implementation in the clinical 
setting, and the dynamic development of the technology.

Liability for the production, procurement, development, 
and ownership of artificial intelligence must be analysed 
in more detail. This includes , responsibility of the 
manufacturer and the health personnel who feed the 
tool with data on a daily basis, responsibility for the data 
set (risk of sample bias), and whether health personnel 
can override conclusions made by algorithms.

6.1.4 Conclusions and continuations 
The interdisciplinary approach was key to success 
in this project. It included legal professionals from 
governmental bodies such as the Ministry of Health 
and Care Services, the Norwegian Directorate of Health 
and the Directorate for eHealth, as well as supervisory 
bodies such as the Norwegian Board of Health 
Supervision, the county governors, the Norwegian 
Medicines Agency and the Norwegian Data Protection 
Authority, lawyers from the Norwegian Medical 
Association, patient advocacy groups, the Norwegian 
Cancer Society, and lawyers and attorneys specializing 
in health law, personal data, and medical technology. 

Seminars and conferences were held, including two 
Nordic conferences with over 100 participants, one in 
June 2018 and the other in November 2019. The legal 
team was generally involved in all the work packages, 

«There are challenges to detailing 
broad consent for research while 
at the same time fulfilling adequate 
guarantees for healthcare» 
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which created a shared understanding of the actual current conditions and needs. 
This has provided a foundation for defining and increasing knowledge about legal 
issues. Together we generated professional legal articles, studies, contributions, 
doctoral dissertations, and blog posts. See appendix for complete list of publications. 

The network will continue collaborating on studies and research after BigMed under 
the umbrella of a new Nordic legal network, Nordic Permed Law. It will be an arena 
for research collaboration and discussion. The ambition is to create awareness of 
legal issues, contribute to enlightenment, reflection and debate, and be able to begin 
the work of making needed changes and adaptations to health law and regulation.

6.2 EVALUATION OF ANONYMITY WITH THE 
PURPOSE OF SHARING GENOMIC DATA 

Anne Kjersti Befring (University of Oslo) and Oda Bakken (Oslo University Hospital)

During the project, a recurring question has been whether or not data is 
anonymous. Several of the other work packages in the project have worked on 
developing tools for sharing and processing different types of health data to be 
used both in research and clinical settings, to generate new and general medical 
knowledge. Some of these tools are so-called bioinformatic tools that streamline 
and facilitate increased sharing and processing of genetic data in healthcare. 

Norwegian law regulates 1) information about someone’s personal circumstances, 
cf. the duty of confidentiality in the Health Personnel Act Ch. 5, and 2) “personal 
data”, “health data” and “genetic data”, cf. e.g. the Patient Records Act § 2 letter 
b, the Health Register Act § 2 letter a, and the GDPR art. 4 no. 1, 13 and 15, cf. the 
Personal Data Act § 1. Together, these definitions constitute the scope of several 
regulations of data generated in the health service. Thus, how the boundaries 
between personal data and anonymous data are drawn will have a crucial impact on 
how the tools developed in the project can be implemented in different settings.

Precision medicine will increasingly make genetic screening and interpretations of 
genetic data a larger part of medical diagnostics and treatment. Interpretation of 
genetic variants is an area that is constantly evolving. To understand whether genetic 
variants are causing disease, they must be assessed based on other information about 
patients’ disease development and compared across both health institutions and 
geographical boarders to interpretations made by other laboratories. A prerequisite to 
successful implementation of precision medicine, is increased processing of genetic 
data in order to provide State-of-the-art healthcare and increase knowledge about the 
genetics of humans, cancer tumors, bacteria and viruses. 52 Thus, clarifying the way 
different types of data – and especially genetic data – are regulated becomes crucial.

The BigMed project has looked further into whether interpreted genetic variants can be 
anonymous and how the boundaries between anonymous and personal data can be 
drawn. 53 This section provides a brief summary.
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Box 11: What is an interpreted genetic variant and why do we need these?  

The genome is the entire inheritance facility (DNA) and consists of approximately 3 billion bases (nucleotides) 
that make up the chemical basic units of the DNA molecules. There are four different types of bases, 
described by the letters A, G, C and T. 54 The composition and order of the bases determine the hereditary 
characteristics of humans.*

An interpreted (classified) genetic variant is a description of a genetic variant together with  
an interpretation of what medical consequences the variant may have for a human being. 

Interpreting a genetic variant means that the variant is classified as pathogenic or not on a scale of 1 to 5, 
where 1 = benign and 5 = pathogenic.

A genetic variant is identified by comparing a patient’s genome with the reference genome, that is,  
by referring to similarities and differences.55

The reference genome is essentially identical to the genome mapped in the human genome project 56,  
and this effectively constitutes a standardized coordinate system for the description of genetic variants.

It is an acknowledged challenge to patient safety that different laboratories sometimes classify variants 
differently and that this can have serious consequences for patients through incorrect diagnoses and medical 
care.57 Thus, comparison with other laboratories’ classification of variants is important in order to be able to 
quality assure the variant classification.

The medical knowledge will become more and more reliable as the evidence material increases for each 
variant. Increased genetic knowledge will contribute to faster and more accurate diagnoses and treatment  
in the long term. 

6.2.1 The challenges of protecting genetic data
An assessment of how genetic variants are regulated must be based on what (interpreted) 
genetic variants really are. Simply, an interpreted genetic variant is a description of the genetic 
variant together with an interpretation of what medical consequences the variant may have 
for a human being. There are many examples of diseases caused by genetic variants.

A challenge with genetic data is that it in general is inherently sensitive with respect to 
privacy. The genome of any human being is unique to that individual. In addition, genetic 
data can contain a lot of information about the individual and their relatives, sometimes 
even a whole group and extend generations. Furthermore, we may not yet know the 
significance of all of the data because knowledge of human genetics is under continuous 
and rapid development. Due to these characteristics, genetic data is given a so-called 
“special status” in UNESCO’s International Declaration on Human Genetic Data.58 

There is also variation in the methods of identification and the sensitivity of genetic data 
depending on its characteristics. In order to determine whether an interpreted genetic variant 
is anonymous and how the boundary between anonymous and personal genetic data can 
be drawn, the current law and relevant legal sources and arguments must be considered.

The first question is whether it is possible to trace the interpreted genetic variants back to an 
identified or identifiable natural person or whether they are guaranteed anonymous (referred to 

*The most common type of genetic variation among humans is called single nucleotide polymorphisms, SNPs (“snips”), 
where one of the bases (A, G, C or T) is replaced with another when compared to the reference genome.
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here as objective anonymity). If the answer is that the variant 
cannot be linked to an identified or identifiable natural person, 
the question becomes whether it can still identify a person 
if the number of occurrences (frequency) of the genetic 
variant in a population is low (here referred to as “occurrence 
identification”). If it is possible to link the genetic variant to an 
identified or identifiable natural person, it must be considered 
whether they are anonymous as a result of a low risk of 
identification (risk-based anonymity). Risk-based anonymity 
is based on a dynamic assessment of the likelihood of the 
data being linked to a person based on both the quantity 
of the data and available means. Relevant factors include 
the availability of technical equipment, costs, characteristics 
of the data being processed, how they are filtered and 
processed (context and quantity), and access control. 59

Furthermore, it is necessary to consider to what extent 
precautionary considerations (the precautionary principle) 
can be emphasised when assessing how genetic variants 
(and also other categories of genetic data) can be processed 
when the purpose is to provide healthcare and underpin new 
knowledge and research. Uncertainty about the possibility of 
identification and how future technology will develop may be 
an argument for obtaining consent to process genetic data.

The conclusion is that a single, interpreted genetic 
variant is anonymous provided that it is not connected 
to other personally identifiable information. The number 
of occurrences of genetic variants in a population is not 
essential for how the boundary between anonymous data 
and personal data is assessed, or for how genetic and 
medical knowledge can be shared. The prevalence of genetic 
variants does not provide sufficient risk of identification. 

6.2.2 Legal review
An interpreted genetic variant can be described as both  
a genetic finding and as new medical knowledge. This 
knowledge is equivalent to understanding other disease 
causes and is not itself sensitive information:

“A link between a particular genetic variant and clinical 
features of a disease is not personal information any  
more than the link between high blood cholesterol  
and heart disease.” 60

Biological prerequisites and symptoms of disease, similar to 
genetic predispositions, are described as “medical knowledge” 
in scientific articles, textbooks and on the Internet. Medical 
knowledge shall be shared so that humanity as a whole 

can benefit from this knowledge and scientific progress. 
The legal challenges arise when genetic data can be 
regarded as both medical knowledge and personal data. 

In the legal proposition of the Personal Data Act duty of 
confidentiality is referred as a “guarantee” to protect patient 
information and research subjects’ integrity.61 The duty of 
confidentiality provides the basis for the protection of both 
the information and its source, but is adapted to the need to 
share information for State-of-the-art healthcare and health 
research.62 This duty does not apply to those who already 
have knowledge of to whom the genetic variants belong 
or when the person’s identity is adequately protected.

The GDPR is incorporated into § 1 of the Personal Data 
Act. 63 The boundary between anonymous and personal 
genetic data is mainly drawn through the legal definitions 
of “personal data”, “health data” and “genetic data” in the 
GDPR. The legal definition of “personal data” in GDPR 
art. 4 (1) and interpretations of this provision form a 
common core for the definitions of “genetic data” and 
“health data” in Art. 4 (13) and (15). In national health laws, 
reference is made to the definition in GDPR art. 4 (15). 64

One consequence of the fact that genetic data is covered 
by these legal definitions is that at least one of the terms 
of GDPR art. 6 (1) and art. 9 (2) must be fulfilled, though 
there are exceptions in GDPR art. 9 (2) letter h and (3) 
for processing genetic data in health care. In both of 
these provisions, reference is made to national law. This 
means that the national health laws will apply, e.g. the 
Health Personnel Act, the Patient Rights Act, the Patient 
Record Act, the Specialist Health Services Act, the 
Health Research Act and the Health Register Act.65

An overarching requirement of both national legislation and 
the GDPR is that human dignity shall be safeguarded, i.e. 
human rights, which also form the basis for the protection 
of integrity. Human rights are regulated by the Norwegian 
Constitution, the legislation in general, and international 
conventions. They include a protection against discrimination 
and against physical violations, interventions in family 
and private life, and the safeguarding of volunteerism 
(autonomy).66 At the same time, the respect for human dignity 
and the duty to provide State-of-the-art healthcare are 
arguments for accessing data, both anonymous and personal, 
and for the storage of relevant and necessary data.67 This 
obliges risk assessments to include different consequences 
depending on the processing of the genetic data.68
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6.2.3 Summary of relevant laws
The European Convention on Human Rights of 1950 (ECHR) and the UN’s 
International Covenant on Economic, Social and Cultural Rights of 1966 (ICESCR) 
contain several articles relevant in the processing of genetic data: ECHR Art. 2, 3, 
8 and 15 and ICESCR art. 12. The UN’s International Covenant on Civil and Political 
Rights of 1966 contains rules on health research and the processing of data, cf. Art. 
7 and 17. These conventions are implemented by the national Human Rights Act 
which determines that they precede Norwegian law in the event of conflict.69

The Biomedicine Convention of 1997 70 is not covered by the Human Rights 
Act, but contains obligations that Norway has committed to. 

The relationship between international human rights, the GDPR, the national Personal 
Data Act and the national health laws can be illustrated as shown in Figure 8.71 

The International human rights are fundamental and superior to both European and national 
legislation. These are fundamental and supranational rights that all people have by virtue 
of being human. The GDPR, on the other hand, applies only to countries within the EU/
EEA and is presumed to comply with human rights. Furthermore, the GDPR is a general 
regulation for the processing of personal data. This general regulation allows member 
states to regulate the processing of personal data more specifically, for example, when the 
purpose is to provide healthcare. Norwegian health legislation constitutes such national 
legislation and is assumed to comply with both the GDPR and international human rights. 

Figure 8. The relation between regulations. When processing 
genetic data in health care, there are exceptions in GDPR art. 
9 (2) letter h and (3). This means that the national health laws 
will apply, e.g. the Health Personnel Act, the Patient Rights Act, 
the Patient Record Act, the Specialist Health Services Act, 
the Health Research Act and the Health Register Act. (16).

GDPR General Data Protection Regulation
HFL   Health Research Act
HPL  Health Personnel Act
HRegL Health Register Act
PBRL Patient Rights Act
PJL   Patient Record Act
POL The National Data Protection Act 
SHL Specialist Health Services Act 

HPL & PBRL PJL & SHL HFL &  
HRegL

GDPR

International Human Rights

National Health Law

POL
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6.2.4 Anonymising unique genetic codes
When the implementation of broad genetic screening 
is discussed, it is often pointed out that it is difficult 
to guarantee the anonymity of research participants 
because each individual’s genetics are unique.72 Genetic 
data and biological material, with advanced technology, 
can be a source of identification and comprehensive 
information, but possibilities for identification vary 
depending on scope, expression, and sensitivity. 
Genetic data cannot always be linked to a person. 

When assessing genetic variants, an important factor 
is that many genetic variants are common between 
humans. When an interpreted genetic variant is detected 
in several different human beings, it cannot necessarily 
be traced back to only one person. Based on an objective 
approach, a single interpreted genetic variant without 
any other identifying information, is anonymous.

Actual and judicial assessments conclude that the number 
of occurrences of a genetic variant (frequency) will not, 
as a general rule, be decisive in determining whether 
a person can be identified. The number of times an 
interpreted genetic variant is observed does not provide 
information that can be linked to a particular human. It 
is not possible to identify a person without access to 
an overview of all genetic variants and how these are 
distributed between human beings or a population.

However, a distinction must be made between identification 
based on frequency (occurrence identification) 
and identification based on a larger amount of data 
that may include several genetic variants and other 
information that makes it possible to identify a person. 
In this situation, the information may remain anonymous 
even if it is not objectively anonymous, on the basis 
that there is a low risk of identification (risk-based 
anonymity), depending on the context in which the data 
is processed. It must be considered at what point the 
amount of genetic variants and other information or data 
increases the likelihood of that a person is identified

One starting point is that fewer than 100 single nucleotide 
polymorphisms (SNPs) are needed to distinguish 
between two individuals’ DNA profile.73 The sum of 
many variants from the same individual in one limited 
database can lead to an identifying “fingerprint”. This 
form of identification requires access to advanced 
means that might be unlikely to be applied, and must be 
viewed in the context of how the data is processed.

Assessing the risk based on the amount of data must 
be carried out on the basis of how the data shall be 
processed and the data’s characteristics.74 The purpose 
of the database, access to the database and access 
control, how information is compiled, and the range 
of data can also affect whether it is anonymous.75 The 
possibility of identification increases when a dataset 
contains other personal data and health data in addition 
to genetic data.76 Furthermore, it must be considered 
what is required of technology in order to identify genetic 
data, for example whether it is generally available or 
whether relevant technology is unlikely to be used.

If several genetic variants are stored from multiple people, 
anonymity may be maintained if the relationship between 
the data is adequately protected. Although there is a 
theoretical possibility of re-identification, genetic data 
filtered in such a way that the variants cannot be associated 
with an individual can still be deemed anonymous.77, 78 Large 
databases, such as in the Beacon network, can be aligned 
so that the risk of re-identification is low by controlling 
how genetic variants and other data are made available. 
The boundary between anonymous and identifiable 
genetic data should be treated as dynamic, not static.

With the technological possibilities of the future, the 
options for defining health data and genetic data as 
anonymous may become more limited. In an anonymity 
assessment, it is merely possible to assess the current 
risks, although it is a requirement to also consider any 
future technological developments. Future technology 
must be assessed continuously in light of how data is 
stored over time and probable threats to the stored data.79

In case of uncertainty regarding the risk of re-identification, 
a relevant precautionary consideration can be to 
consider the consequences of the data being defined 
as personal data and of the data being defined as 
anonymous. Uncertainty related to anonymity can 
lead to unfortunate and unintended restrictions on 
the sharing of medical knowledge. As a result, health 
institutions and healthcare professionals may fail to 
use modern, necessary and accessible tools to share 
interpretations of genetic variants, even though they 
know it can impact diagnostics and treatment methods. 

Furthermore, uncertainty can lead to increased use of 
resources and implementation of measures that may not 
be necessary, or in the worst case, to the detriment of 
patient safety. 
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Thus, in legal “gray zones”, it is necessary to consider risk 
in a broader perspective. The risk of identification must 
be balanced with the risk of not sharing or processing the 
data.* This includes assessments of proportionality and 
prudence of sharing genetic data (e.g. in order to provide 
medical treatment to a patient with a rare condition).80 

6.2.5 Looking forward
National authorities have not yet communicated a clear 
strategy for how genetic data should be processed in 
Norway. There are many different types of data that will 
all qualify as genetic data, but not all genetic data will be 
categorized as “genetic data” according to the definition 
in the GDPR. As increased processing of genetic data lays 
the ground for State-of-the-art health services in Norway, 
it is crucial to clarify the regulations for genetic data. For 
now, it is up to the data controllers to make independent 
assessments. This can lead to different practices across 
health institutions and contribute to unequal health services.

There is a need for a more nuanced regulation of data. 
Current consent schemes are not adapted to the needs 
of data in health care, or to fulfil other patient rights**. 
General regulations of genetic data both within and 
outside the healthcare sector contribute to uncertainty 
and unpredictability. Relying on the health institutions 
to set the course may have an unfortunate impact 
on patient safety, and furthermore have a significant 
impact on the implementation of precision medicine. It 
is a state duty to make sure that citizens can enjoy the 
benefits of scientific advancements. The introduction 
of precision medicine, artificial intelligence and big 
data should lead to the development of new statutory 
data sharing and consent schemes. The technological 
development and the prohibition in GDPR art. 9 (1) 
presume a wider range of legal bases in national law for 
the processing of data covered by the legal definitions.

Storing, sharing, and comparing genetic data is essential in 
order to implement precision medicine and new technology 
in accordance with national strategies. This justifies that 
the health authorities should work with the stakeholders 
in the health sector to set the course for regulations.

6.3 ENSURING SAFE APPLICATION OF 
DIAGNOSTIC TOOLS – COMPUTATIONAL 
TRUST AND REGULATIONS 

Hariharan Michael Hallock (DNV), contributions by 
Frédéric Courivaud (DNV), Courtney David Nadeau 
(DNV), Dag Frode Nilsen (Sykehuspartner) 

 
Since 1993, Europe has required that all commercial 
products have a CE marking to demonstrate their 
compliance with health, safety and environmental 
protection regulations. Medical devices are assessed 
to receive CE marking in one of three categories: active 
implantable medical devices (AIMD), medical devices 
(MDD), and in-vitro diagnostic medical devices (IVDD). In 
response to significant technological and computational 
advances and patient safety breaches, these three 
categories, will be replaced by new regulations (MDR 
and IVDR) which come into effect in May 2021 and May 
2022. While the MDR and IVDR cover different subsets 
of devices, the MDR is the ruling regulation, with the 
IVDR aligning on MDR principles for the regulation of 
in-vitro diagnostics devices (including software). 

The MDR/IVDR are more stringent than previous 
directives, with a wider definition of medical devices. 
It includes all devices which provide information used 
in medical diagnosis or prognosis of human beings 
(article 2(1)), specific caveats addressing technologies 
created within health institutions ‘in-house’ (article 
5(5)), and re-classification of software as higher risk 
(according to rule 11 – Annex VIII). Therefore, software 
will primarily be classified as class IIa, IIb and III, and will 
require involvement of a Notified Body in the certification 
process. (see – BigMed’s CDS software whitepaper) 81

These new regulations aim to ensure proper 
documentation about the safety and performance of 
the device during its life-cycle and align with European 
single market principles. Although AI is not explicitly 
mentioned in the regulations, these solutions may 
be classified as medical devices and will require 
manufactures and economic operators obtain MDR/
IVDR certification. Short comings in these current 

*Both proportionality assessments and prudence assessments can have an impact in this situation. In many situations, the consent scheme may 
be too limited, which can be illustrated by the fact that requiring a consent may limit other fundamental patient rights (e.g the right to receive 
health care regardless of the ability to give consent and the right to protect themselves from information about their health). Requiring consent 
may also limit the possibilities to use other patients’ data in diagnostics even though the patients’ identities are adequately protected.

**For example, the consent scheme is not adapted to patients and research subjects who wish to contribute 
with their health data without being in interaction, which a dynamic consent adds up to.
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1. Human agency and oversight
2. Diversity, non-discrimination and fairness
3. Technical robustness and safety
4. Environmental and societal well-being
5. Privacy and data governance
6. Accountability
7. Transparency 

Equally as important are mechanisms and protocols to ensure these principles  
are enforced. The High-Level Expert Group on AI (AI HLEG) have attempted to 
address this by suggesting technical and non-technical methods in Ethics Guidelines 
for Trustworthy Artificial Intelligence109, but these require further development.

The recommendations identified are expected to culminate 
into horizontal regulations in 2021, through two actions: 

1. Current legislative frameworks which AI systems must adhere to need 
updating to ensure that AI is adequately addressed. Services and software, 
which AI often is, do not fall under the scope of certain legislation 
such as product safety legislation and product liability directive. 

2. New legislative frameworks specific for AI will be created, likely entailing 
a risk-based approach, with applications deemed high-risk needing to 
comply with new requirements. These requirements are likely to address 
needs relating to training data, data and record-keeping, information 
to be provided, robustness and accuracy and human oversight. 

7 principles offering guidance 
to designers, developers and 
deployers of AI to implement 
ethical and trustworthy AI  
into practice

Box 12
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regulations relating to AI will be addressed through 
the EU Medical Device Coordination Group (MDCG), 
with specific guidance due in the near future. In 
preparation for this, manufacturers and stakeholders 
can begin (or continue) to familiarize themselves with 
recommendations for trustworthy and ethical AI (e.g. ISO/
IEC TR 24028:202082, Assessment List for Trustworthy 
Artificial Intelligence (ALTAI) self-assessment tool 83) 
and build their conformity documentation in line with the 
requirements that correspond to their device intended 
purpose, classification, and conformity assessment route. 

6.3.1 Regulatory compliance for CDS
Clinical decision support (CDS) software helps clinicians 
to “retrieve, filter and/or analyse patient data and 
assist them in the decision-making process” 84. 

CDS software has the potential to aid delivery of safer, 
quicker and higher-quality care through diagnostics 
support, prognosis of treatment and prediction and 
monitoring of illness outcomes. As such, it is likely that CDS 
software will need to adhere to MDR/IVDR. Manufacturers 
of such software, whether it be developed by industry 
or by health institutions ‘in-house’, should consult MDR/
IVDR themselves to assess if compliance is required.

A growth in CDS software in the healthcare market 
coincides with the digitalisation of healthcare globally, and 
the resultant increase in health data available. However, 
healthcare stakeholders should not mistake the publication 
of academic papers demonstrating CDS technologies on 
isolated data sets and patient populations as evidence that 
the CDS necessarily is safe and effective. MDR compliance 
is required for software manufacturers to ensure that 
their tools are safe, effective and used responsibly. 

Discussions enabled by BigMed generally indicate that 
stakeholders are unaware of the details of these regulations 
and their regulatory responsibilities. Many underestimate 
the scope of MDR, and the quality, engineering, regulatory 
compliance and clinical investigations needed before these 
tools can be made available for physician or patient use.

Both regulatory and manufacturing challenges remain 
for AI based CDS software wanting to demonstrate 
compliance to directives, especially while standards 
for consistent assessment are not yet available.

6.3.2 Regulatory compliance for lab developed tests
Sequencing-based genetic tests, both for cancer and for rare 
diseases, are part of standard diagnostic care in Norway. To 
compliment these, multiple use cases and pilots for AI and 
ML technologies have been developed. These have unveiled 
complex safety, quality and regulatory considerations. 

From May 2022 NGS-based genetic tests will require 
IVDR-compliance. Today in the Nordics, most of these 
diagnostics are provided as lab-developed tests by 
individual hospitals, where these tests are developed, 
validated, verified and deployed. Under the new regulations, 
hospitals face more robust regulatory requirements 
designed to ensure patient safety and test performance. 
Additionally, the indications for which health institutions 
can develop their own tests is greatly reduced in scope, 
and a broader shift to certified solutions is expected. 

6.3.3 AI in precision medicine 
AI is increasingly being used in medical devices, and there 
are now several examples of “AI as medical device software” 
(AI-MDSW) used in radiology and image analysis. These are 
CE marked, mostly AI-enabled CDS software, certified under 
the (less stringent) MDD (not the MDR) . EU-MDR applies to 
any software qualified as a medical device regardless of the 
presence of artificial intelligence. However, the interpretation 
of specific regulatory requirements for AI driven software 
needs some clarification. Specific guidance on that 
matter is expected to be published soon by the MDCG. 

Discussions enabled by BigMed have highlighted mixed 
perspectives when it comes to implementing AI within 
healthcare. While many stakeholders see the potential 
of AI to improve accuracy of diagnosis and success of 
treatment, many also fear that the understanding of AI 
is still immature and that mechanisms to quality-assure 
AI algorithms and models are inadequate. These feelings 
are common across several industries and are addressed 
in recent EU publications on AI. The High-Level Expert 
Group on AI (AI HLEG) Ethics Guidelines for Trustworthy 
Artificial Intelligence85, and more recently the AI HLEG’s 
Assessment List for Trustworthy Artificial Intelligence 
(ALTAI)86 focuses on ethics and trustworthiness; the EU 
White Paper on Artificial Intelligence: a European approach 
to excellence and trust 87, focuses on potential regulation. 
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7. Practical examples from the 
implementation of precision 
medicine in three clinical areas 

At the outset of the BigMed project, it became clear that the clinical fields 
and work packages would intersect with technology, data protection, legal 
issues and infrastructure. This was reflected in a two-dimensional, interwoven 
organisation of the project (Figure 9). The expectation was that the clinical 
research work would identify and challenge barriers, and that the project would 
use these experiences to identify and hopefully address general obstacles.

In the cardiology work package, the focus was on making clinical text analysable using 
natural language processing (NLP) technology. The work highlighted the immaturity of 
the current regulatory and infrastructure paradigm when it comes to enabling efficient 
re-use of clinical data. These experiences are generalizable to most large-scale clinical 
data use cases. It also demonstrated the usability of NLP in extracting analysable data from 
clinical notes, and the value of synthetic data for research and development purposes. 

Figure 9. Matrix organisation of BigMed.
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The work underscored the need for Norwegian clinical word embeddings, giving impetus to 
a wider collaboration on NLP, and the inclusion of Akershus University hospital in the project 
(section 3.2: Extracting information from clinical text with natural language processing).

The overall aim of the genetics work was to increase the speed of genetic diagnosis in 
critically ill children with suspected rare diseases. This entailed establishing new pipelines 
for genetic analysis using new infrastructure, improving the precision and speed of clinician 
feedback to geneticists employing ontologies, and making a new variant calling software 
application called ELLA. Sharing information on genetic findings and related phenotypes 
between laboratories is essential, and the current work highlighted and challenged 
regulatory approaches to genetic data, spurring on suggested changes in Norwegian law.

The colorectal work package took on the challenge of presenting large and complex 
data sets to clinicians in order to facilitate important treatment decisions. The work also 
demonstrated a direct interaction with national cancer registry data and the use of patient 
similarity networks in comparing the current patient’s data to similar patients’ disease 
trajectories and treatment responses, approaches that could aid both clinical decision making 
and patient involvement in therapy choices. Reusing previous patients’ data from registers 
– or directly from the EHR – challenges the current partitioning of clinical care, quality 
assurance and research, and emphasises the need for rethinking health data regulations.

The clinical research work in BigMed grew out of established and on-going projects. The 
following sections, written by the clinical researchers supported by their teams, highlight 
some of the practical challenges encountered when trying to undertake precision 
medicine-related research under the current technological and regulatory paradigm. Both 
practical and pragmatic workarounds had to be applied, while certain achievements were 
possible due to the environmental changes achieved in the course of the BigMed project. 
A vision for a more streamlined big data work flow in the respective fields is presented.

«The overall aim of the genetics 
work was to increase the speed 
of genetic diagnosis in critically 
ill children with rare diseases»
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Sections in chapter 7

7.1  Prevention of sudden cardiac death
7.2  Whole genome sequencing for rare diseases 
7.3  Colorectal cancer

Additional BigMed material 

Relevant BigMed reports
 − Patient similarity networks for precision medicine 
 − Implementing NGS-based diagnostics in cancer care: Technical and organisational factors in the Nordics 
 − Consent for clinical genetic testing in Norway – Considerations to the development of process and content 
 − Germline genomic medicine: A BigMed needs analysis 
 − Suggesting Reasonable Phenotypes to Clinicians 
 − Drivers in rapid genetic diagnostics for rare diseases in infants 
 − Clinical reporting of NGS data: A systematic Nordic collaborative, peer-reviewed benchmarking 
 − Big data management for the precise treatment of three patient groups 

Podcasts
 − Personalised Cancer Treatment 
 − Genomics and Datasharing 
 − Cardiology and Technology 
 − The Key to Precision Medicine 

Recorded webinars 
 − BigMed at EHiN 2020
 − BigMed-konferansen 2020: Veien til presisjonsmedisin 

An overview of all material from BigMed is available at bigmed.no

7

https://bigmed.no/assets/Reports/patient_similarity_networks_for_precision-medicine_version_1.pdf
https://bigmed.no/assets/Reports/implementing_ngs-based_diagnostics_in_cancer_care_dnvgl.pdf
https://bigmed.no/assets/Reports/consent-process-2020.pdf
https://bigmed.no/assets/Reports/bigmed-dnv-gl-genomic-medicine-needs-white-paper-2020.pdf
https://bigmed.no/assets/Reports/Suggesting_reasonable_phenotypes_Slaughter_Hovland.pdf
https://bigmed.no/assets/Reports/bigmed-nicu-seq-report.pdf
https://bigmed.no/assets/nacg-paper-2018.pdf
https://bigmed.no/assets/Reports/Big_data_management_for_the_precise_treatment_of_three_patient_groups.pdf
https://bigmed.no/podcasts/personalized-cancer-treatment
https://bigmed.no/podcasts/genomics-datasharing
https://bigmed.no/podcasts/cardiology-technology
https://bigmed.no/podcasts/key-to-precision-medicine
https://ehin.no/2020/sessions/bigmed-konkrete-it-losninger-for-a-bringe-oss-ett-skritt-naermere-presisjonsmedisin-i-praksis/
https://vimeo.com/469672581/59bc331c8f
http://bigmed.no
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7.1 PREVENTION OF SUDDEN CARDIAC DEATH 

Pål H. Brekke (Oslo University Hospital), contributions by Kristina Haugaa (Oslo 
University Hospital), Lilja Øvrelid (University of Oslo), Fredrik A. Dahl (Akershus 
University Hospital), Petter Hurlen (Akershus University Hospital), Ildiko Pilan 
(University of Oslo), Øystein Nytrø (NTNU), Taraka Rama (University of Oslo).

Sudden cardiac death (SCD) and sudden cardiac arrest (SCA) are dramatic events 
for the individual patient and their families. While exact data are lacking, national 
and international statistics suggest there are 5000-6000 cases of SCD per year in 
Norway, and survival of out-of-hospital cardiac arrest is only 5-10%. The incidence of 
SCD increases with age, but in younger age groups, the proportion of SCD as a cause 
of death is larger than in older age groups. Exploring new and more effective ways to 
prevent SCD and SCA is of considerable medical and socioeconomic importance.

SCD is generally defined as an unexpected death without an obvious non-cardiac cause. 
Indeed, at the turn of the 21st century, current knowledge indicated that for nearly half of SCD 
cases, cardiac arrest was the first symptom of cardiovascular disease 88. In children and younger 
adults, genetic heart disease such as arrhythmia syndromes and cardiomyopathies are the 
leading causes of SCA/SCD. Coronary artery disease increases rapidly from middle age 89. 

The healthcare system strives to identify individuals who are predisposed for such serious 
conditions, and to provide individually tailored prevention and/or treatment. On the one 
hand, there is continuous effort in improving SCD/SCA risk assessment in established 
cardiac disease in order to more accurately identify those patients requiring more intensive 
follow-up, and letting patients with very low risk lead normal lives with as little intervention 
from healthcare systems as necessary. On the other hand, the challenge for preventative 
care is identifying people at risk even before they have received a medical diagnosis. 

Box 13: Hypertrophic cardiomyopathy (HCM) 

In BigMed, we have used the most common genetic heart disease, 
hypertrophic cardiomyopathy (HCM), as an example condition where 
big data assisted diagnosis and risk stratification may improve prognosis 
and prevention of SCD. Our approach, however, has been to highlight 
areas where the methodology can be generalised to other conditions. 

HCM has a prevalence of 0.2–0.6%. A pathogenic mutation is found in 
approximately 60% of patients. In HCM, the heart wall muscle can increase to 
several times normal thickness, which affects heart muscle contraction, increases 
risk of ventricular arrhythmias, may obstruct blood flow through the heart, can 
impair oxygen delivery to the heart muscle itself, and cause formation of scar 
tissue inside the heart walls. For patients with HCM, possible symptoms are chest 
pain during exercise, breathlessness, palpitations, dizziness, loss of consciousness 
(syncope), fluid retention, and fatigue. Studies have shown that patients with HCM 
have a risk of ventricular arrhythmia, cardiac arrest, or SCD of nearly 1% per year.  
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While some factors contributing to individual risk – such as 
lab test results and electrocardiographic abnormalities – may 
be easily measurable and available for analysis, there is a 
lot of information in the textual part of the electronic health 
record that has potential to add substantially to future risk 
models. Most people don’t live their lives under constant 
medical surveillance (future smart devices may certainly 
invalidate this statement). Therefore, the patient’s narrative 
of symptoms and event, and the clinician’s observations 
and reasoning, are important sources of health data. 

The BigMed project has highlighted the need for language 
and domain specific basic NLP tools (see section 3.2). 
By employing this technology, it is possible to extract 
symptoms, findings, measurements and other data points 
from clinical text and store these as analysable values. 
This will allow the preservation of the expressive and 
nuanced human language in clinical notes, essential for 
clinician-to-clinician communication about the patient’s 
condition and treatment considerations, and obviate 
the need for time-consuming data structuring – and 
inherent information reduction – on the input side.

The BigMed project set out to pave the way for NLP use 
on Norwegian language health records. However, due to 
regulators’ privacy concerns, limited access to medical 
records forced a detour via synthetic (made up, but 
realistic) clinical text data, which provided some important 
learning points. We were able to show that in cases where 
data access is difficult or impossible, synthetic data may 
be a useful starting point for developing NLP 90. We also 
showed that data models based on synthetic data work 
quite well when transferred to real clinical data. The 
clinical use case for this was family history 91, which when 
structured, can assist the clinician in ascertaining hereditary 
disease patterns, and when linked to clinical events in 
the family, can support individual risk assessment.

The project also demonstrated the effectiveness of NLP 
methods more commonly used in sentiment analysis – rather 
than named entity recognition – to identify patients who 
have had a loss of consciousness (syncope) 92 which is a 
known risk factor for sudden death in HCM. Syncope is a 
commonly occurring clinical phenomenon which in most 
cases is harmless, but in specific cases and conditions is 
associated with serious incidents. However, since the ICD-10 

Figure 10. AI tools can potentially detect features not readily visible to clinicians, and support tasks such as risk stratification or diagnosis.
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symptom code for syncope is not associated with any economic reimbursement for hospitals, 
the diagnosis is often missing from hospital diagnostic registries. A Danish study has shown 
that 1/3 of syncope cases admitted to hospitals are missing the ICD diagnostic code. This 
has obvious implications for the use and accuracy of risk models based on registry data93.

Clinical utility of such tools could be NLP systems that recognise that there has been 
a likely sudden death in the patient’s family history, or that the patients’ previous 
records contain an episode of loss of consciousness (syncope), which could direct 
the clinician to order more extensive diagnostic tests, such as genetic analysis. 

Norwegian clinical text from hospital records is sparse, highly context dependent, rich in 
domain-specific terminology and abbreviations, and sentences are often incomplete. All 
of these characteristics are challenging general NLP tools. Fundamental building blocks 
in NLP such as word embeddings – terms with similar meanings will have similar positions 
in a vector space that aid in generalising a machine learning model – are non-existent for 
Norwegian clinical text. BigMed has aimed to address this deficiency by building word 
embeddings from hospital records from Ahus, but the analysis was only able to start in late 
2020. The project faced a near two-year delay in getting data access due to regulatory bodies’ 
unfamiliarity with big data subjects and machine learning/AI, and inconsistent interpretations 
of regulations in local, regional and national bodies. This again illustrates the importance of 
the work BigMed has done regarding legal interpretation and simplification (see chapter 6).
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AI in medical imaging and 
biological sensor data
As general image analysis has been at the forefront of AI and neural 
network technology evolution, it is natural to assume that medical imaging 
will be among the first areas of medicine impacted by AI/ML solutions. 
Indeed, several AI based tools for tasks such as breast cancer diagnosis, 
stroke detection and image segmentation are already being marketed to 
radiology departments. In cardiology, related to the SCD/SCA problem, the 
expectation is that AI-supported analysis of echocardiograms, angiographies 
and MRI images will provide novel markers of disease and progression. 

Very likely, subtle patterns in large imaging datasets contain important 
distinguishing phenotypical features which will allow more personalised 
prevention and treatment. Automated or AI-supported image analysis could 
alert the clinician to a high risk of SCD in a patient independent of disease 
history or genetic data due to specific but subclinical patterns. Additionally, in 
patients with established disease, AI-enabled imaging studies will more precisely 
classify patients as having high or low SCD risk depending on the context.

Research from OUH and other BigMed partners in the cardiological imaging 
field has shown that manual analysis of speckle tracking echocardiography 
and changes in segmental movement expressed as global strain, mechanical 
dispersion, and myocardial work have significant diagnostic and prognostic 
importance in several cardiac conditions 94 95, 96 97. It is likely that AI-supported 
cardiac image analysis can reveal further measures of clinical importance. 

While medical imaging was not part of the BigMed charter, similarities in big 
data approaches between NLP and image processing lead to a collaboration 
with the ongoing NordForsk funded project PM Heart 98, which aims to combine 
genetic, imaging, and health record data to achieve more targeted treatment of 
ischemic heart disease in order to prevent both under- and overtreatment.

The most commonly used diagnostic tool in cardiology is the electrocardiogram 
(ECG), and rule-based expert systems have been built into ECG machines for 
decades. With the expansion of ML/AI-based diagnostics, it is probable that 
future ECG devices will have much better diagnostic algorithms. An interesting 
example is the ability of an AI algorithm to identify patients with paroxysmal 
(periodic) atrial fibrillation from ECG recordings of sinus rhythm; ie. the model 
was able to recognise changes in the ECG that are not visible to human readers. 
Future ECG devices, including home use and/or wrist-worn personal devices, will 
perhaps (or even probably) be able to recognise pre-clinical disease and alert 
the wearer or his/her clinician to these findings. The growth of other personal 
sensors and behavioural data available from personal smart devices will likely 
give rise to new diagnostic, prognostic and therapeutic tools not yet envisaged.

Box 14
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The expectation is that genetic analyses will become even more widely available. There 
is also an assumption that the interpretation of single and multiple gene variants and 
associated epigenetic changes will allow us to better understand disease mechanisms, and 
thus treatment and prevention options, and provide more individualised risk estimates. 

There is also great potential in environmental, personal sensor and behavioural data that is 
not currently being collected or analysed at scale by healthcare organisations. Supporting this 
are findings such as a recent registry study from Denmark showing that a large percentage 
of patients with SCD contacted the healthcare system in the days immediately prior to their 
event 99, which is highly suggestive of interpretable symptoms and signs existing as a precursor.

Expanded access to data sets consisting of genetic and out-of-hospital data combined 
with AI-assisted re-interpretation of contemporary and historic data from medical imaging, 
heart rhythm recordings, lab data and text records will likely add significantly to our 
understanding of disease progression and adverse event risk in patients with established 
heart disease. Most clinicians and researchers believe a big data approach has the 
potential to reduce the proportion of “blue sky” SCD and SCA events significantly.

7.2 WHOLE GENOME SEQUENCING FOR RARE DISEASES 

Yngve Sejersted (Oslo University Hospital), contributions by Laura Slaughter 
(University of Oslo), Tony Håndstad (Oslo University Hospital)

Rare diseases are conditions that affect less than 1/2000 people in the population. Although 
each disease is rare, the prevalence of rare diseases is quite common. Roughly 30.000 
to 100.000 Norwegians have one or more rare diseases 100. Approximately 80% of rare 
diseases have an identified genetic origin 101 and their effects can include life-threatening 
conditions in the newborn and chronically debilitating or late-onset disorders. 

Box 15: Monogenic disorders in critically ill newborns 

Genetic conditions cause more than 20% of all infant deaths in developed countries. 
Identification of genetic disorders in the neonatal intensive care unit may be a 
challenge if the phenotype is not easily recognizable, as the clinical presentation 
may be atypical at an early stage, the full phenotype may not have evolved, and 
prematurity or other complications may mask diagnostic clues. It is therefore important 
to establish an iterative process involving the paediatrician and the laboratory 
performing the genetic analyses for the critically ill newborn, as new information 
about the patient can have a heavy impact on the interpretation of genetic variants.

In BigMed, we have focused on this patient group to address issues hampering an 
efficient workflow for genome diagnostics, mapping out efficient ways for flow of 
information to increase precision, speed and patient/family empowerment. Critically ill 
newborns may benefit from reduced turnaround time for genetic analyses, increased 
data sharing and reiterations of data analysis (structured phenotyping, communication 
solutions and multidisciplinary team evaluations). We have highlighted certain themes 
due to their generalizability to diagnostics of other genetic disorders. 

7
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When newborns are admitted to a neonatal intensive care 
unit with a suspected genetic disorder, the traditional 
approach is to reach a genetic diagnosis through a 
prolonged and costly diagnostic workup including candidate 
gene analysis (single-gene testing). A faster and more 
accurate diagnosis may be highly beneficial for precision 
intervention, tailored care, accurate genetic counselling 
of the family, and result in a reduced workup burden. 

The Department of Medical Genetics at Oslo University 
Hospital (DMG) is the first diagnostic lab in the 
Norwegian national healthcare system to offer Whole 
Genome Sequencing (WGS) as part of routine care. 
The implementation of new techniques comes with an 
obligation to build and share knowledge. To maintain 
public trust in genomic medicine for years to come, there 
will be a high demand for transparency, appropriate 
regulation, quality assurance and ethical frameworks. 
Robust technical infrastructure is mandatory to ensure 
data availability while maintaining high security. Patient 
empowerment should be a priority for all stakeholders. 

These goals can be achieved through public/patient 
education and systems for dynamic consenting 
that will allow a tailored continuum of care. DMG 
is ready to pilot a secure, dynamic consent system 
developed by BigMed-partner Tjenester for Sensitive 
Data (TSD at USIT), which would allow annotation 
of patient data sets already stored in TSD.

7.2.1 The importance of structured phenotypic data 
Vast amounts of sequence data are generated and 
processed in bioinformatics pipelines. Variation from the 

reference genome is filtered algorithmically, but the results 
are manually interpreted. This process of distinguishing 
benign from pathogenic variations is highly labour intensive. 
The amount of work required for interpretation and 
reporting can be somewhat reduced by limiting the analysis 
to immediately relevant genetic findings. For this reason, 
routine diagnostics using whole exome and whole genome 
sequencing techniques are often performed with predefined 
gene panels to limit the amount of data for manual 
interpretation and reduce the number of irrelevant genetic 
findings. An alternative approach is using phenotypic data 
to guide the interpretation of a whole exome/genome 
through prioritising/ranking of variants within genes fitting 
the patient phenotype. For this to be effective and objective, 
structured patient phenotypic data is a prerequisite.

In addition to objectivity when evaluating the 
relevance of genetic findings in patients, structured 
phenotypic data are important for other reasons: 

1) Reproducibility of results, quality, and patient safety. 

2) Sharing (Matchmaking of variants and 
phenotype to identify other patients worldwide, 
which may provide evidence for reclassification 
of a variant of uncertain significance).

3) Equality (patients with similar phenotypes 
receive the same analysis and interpretation)

4) Knowledge (national database/variant registry).

«The Department of Medical Genetics at 
Oslo University Hospital (DMG) is the first 
diagnostic lab in the Norwegian national 
healthcare system to offer Whole Genome 
Sequencing (WGS) as part of routine care»
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Box 16: BigMed use case HPO through requisition form  

Labs and medical device manufacturers need to examine carefully how and 
what data they collect, how this is used in practice, and how this integrates 
with the IT of the wider health system. The electronic health record (EHR) 
is a reputable source of information for phenotypic data. In BigMed, we have 
developed a proof-of-concept web application using semantic technologies 
to create a phenotype suggestion service for paediatricians. Using the 
now well-recognized Human Phenotype Ontology (HPO), biomedical 
ontologies, and other knowledge resources to provide additional information 
to clinicians to suggest related phenotypes for further work-up 102. The tool 
prompts the clinician to be thorough in describing patient phenotypes 
and increases the quality of information communicated further to the 
laboratory. The work addressed methods to provide suggestions and user 
“information interaction” issues that are connected to the user interface.

We provide suggested diseases and HPO codes to clinicians based on a lookup 
mechanism with information about disease-HPO code associations. These 
are found in the HPO ontology annotation file\footnote 103. The tool under 
construction will provide HPO codes that point to further workup needed in 
the diagnostic process, however it is not a diagnosis “clinician-replacement” 
machine, instead aiming to augment clinician knowledge with suggestions 
for diseases that are very specific and/or rare. The Norwegian EHR provider 
DIPS has implemented the suggestion service and based their requisition form 
interaction on the user interface in the proof-of-concept tool. 

7.2.2 A high-speed pipeline for WGS 
A short turnaround time from sample submission to a complete genomic report is essential 
for making genomic medicine relevant to critically ill infants 104. Three main bottlenecks 
determine turnaround time of rapid WGS pipelines: 1) Library prep and sequencing, 
2) Upstream bioinformatics, and 3) Prioritisation and interpretation (downstream). 

DNV has addressed 1 in other projects. DMG found solutions for 2 & 3: 

The upstream bioinformatic processing time of a WGS trio can be reduced from four days 
to three hours by using Dragen, an FPGA-based system. We automated the flow of data 
between different infrastructures. In addition, we developed a pipeline to identify structural 
variants from WGS data. Manual labour does not scale well. To increase quality and speed, 
DMG has implemented an in-house developed analysis tool (ELLA, allel.es) 
for supporting interpretation of genetic variants. ELLA is based on internationally 
accepted standards for variant assessment, as specified in the ACMG-AMP guidelines. 

We implemented “Variant Exchange”, a tool for sharing variant interpretations 
between different labs. We also developed “Beacon” and “Matchmaker” 
services to quickly locate similar patient cases. Deployment in routine 
diagnostics rests on the dynamic consent system previously mentioned.
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In total, this has significantly reduced the turnaround time from several months down to 
around 5 working days, increasing the clinical utility of the analysis when time is critical.

Currently, the time sink is waiting for the weekly sequencing run, and for missing 
parental samples necessary for performing trio analyses. Counterintuitive 
as it may seem, increasing sample volumes for whole genome sequencing 
will further reduce turnaround time due to more frequent runs.

Box 17: BigMed Use case ELLA  

ELLA is a software tool for clinical interpretation of genetic variants that is 
developed and in use at DMG. Within BigMed, two projects have aimed to 
expand the existing capabilities of ELLA, for the benefit of our patients. 

The first project involves expanding the use of high-throughput DNA sequencing 
technologies from the current, short genetic variants to also include larger, 
structural variants. This means that a near-complete picture of a patient’s genetic 
makeup can be produced in a single sequencing run, both increasing the positive 
detection rate and reducing the time and cost required to reach an answer. In 
BigMed, we have developed a bioinformatics variant calling pipeline that now 
includes structural variants, and thoroughly validated it for clinical use. In addition, 
we have made significant strides towards presenting the results in ELLA alongside 
shorter variants, with the first implementation expected in coming months. 

The second project involves using structured phenotypes gathered from patients 
for more efficient interpretation of genetic variants. In BigMed, we have identified 
ways of solving this problem using either simple methods that narrow down 
the list candidate genes and therefore the number of variants to interpret, or 
more advanced approaches that allow sorting of variants according to likely 
pathogenicity. This project will need input from phenotyping tools and the 
functionality is expected to result in significant efficiency gains for the high speed 
high throughput sequencing (HTS) pipeline. 

The second project involves using structured phenotypes gathered from patients for more 
efficient interpretation of genetic variants. In BigMed, we have identified ways of solving this 
problem using either simple methods that narrow down the list candidate genes and therefore 
the number of variants to interpret, or more advanced approaches that allow sorting of variants 
according to likely pathogenicity. This project will need input from phenotyping tools and the 
functionality is expected to result in significant efficiency gains for the high speed HTS pipeline.

7.2.3 The future vision of rare disease care in NICU
Medical genetics services should in a few years be able to provide over-night diagnostic 
services for critically ill patients in NICUs and other ICUs. This puts extreme demands 
on performance of ICT infrastructure in public hospitals. Future diagnosis and treatment 
of rare disease patients is moving towards a continuum-of-care model. Using NLP to 
interpret the EHR free text and identify relevant genetic conditions can greatly speed this 
process. Clinicians will need to approve NLP suggestions for structured phenotypes. These 
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NLP-suggested phenotypes can predict diagnosis before 
submission to a laboratory, and guide patient-specific 
bioinformatics and variant interpretations from patient 
genomes in critical disease, and also later in life. 

Patient portals can support informed preference capture, 
gain collaborative feedback and self-reporting by patients, 
and enable information and communication about reanalysis 
and research to be conveyed. The patient/guardian is 
notified through a patient portal (helsenorge.no or a local/
national electronic consent solution, i.e. UiO/TSD) that their 
physician has placed an order for genomic testing, and they 
are encouraged to provide their preferences (consents). 

This information is used in the bioinformatics pipelines 
to automatically build a relevant gene panel and predict 
the post-test probability of candidate diagnosis from the 
sequencing results prior to manual interpretation of the 
identified genetic variants. When result interpretation 
is inconclusive, the paediatrician receives notification 
in EHR asking for supplementary information. Patients 
are invited to actively collaborate through self-reporting 
(health issues, data from wearables etc.), and are given 
the option to consent to the sharing of data with other 
collaborating laboratories to increase the probability of 
reaching a correct diagnosis. Genomic data is stored for 
documentation which also enables later reanalysis and 
return of new results according to the patient preferences 
(the patient must have opted in for recontact). 

Patients can opt in for research, which may provide 
easy access for patients and families to relevant 
research projects and clinical trials. After genetic 
counseling (online certification/exam), patients/
parents may also choose to have their data analysed 

for secondary findings (ref. ACMG-list), including 
pharmacogenomics and information relevant for 
preventive healthcare, or for family planning purposes.

(Interpreted) genomic variants and structured phenotype 
data are stored in a searchable format in the EHR. This 
enables rapid identification of patients with comparable 
genetic variation and identification of patients with a high 
likelihood of having an undiagnosed genetic disorder. 
This requires the EHR to be searchable for similar 
patients and the legal grounds for such a search. 

With increasing complexity and dissemination of genome 
analyses in medical genetics, the need for quality assured 
information and communication between the patient and 
doctor, caregiver, and lab has emerged as an important 
premise for state-of-the-art medical genetic services. 
There is a substantial patient benefit in a systematic 
approach to data sharing (read more in chapter 3.4) and 
reinterpretation. Genomic medicine is moving towards 
a “continuum of care model”, where surveillance and 
reanalysis of genomic information, and reinterpretation 
and reclassification of results will inform disease 
management, reproductive health, family planning, and 
preventive medicine throughout life. The individual needs 
and expectations will be very different depending on the 
context in which genomic data is produced. This context 
can range from predictive prenatal testing to diagnostic 
testing for acutely ill newborns, late onset disorders, or 
carrier screening in family planning. To meet these individual 
expectations, a transparent solution for patient information 
and consents should be in place. There needs to be a 
clear and concise contract between the patient and the 
lab, enabling the patient to make informed choices, and 
change these preferences throughout their lifespan.105

«Patients can opt in for research, 
which may provide easy access for 
patients and families to relevant 
research projects and clinical trials».

7
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Box 18: Bioinformatics  

Bioinformatics is an interdisciplinary field that develops methods, 
analyses and software tools for understanding biological data. 

In the context of HTS-based diagnostics, bioinformatics can be thought of as consisting 
of two main parts, variant calling and variant interpretation. 

Variant calling 
This is the process of identifying all the genetic variants found in a patient sample.

 ⁄ Mapping of sequencing reads to a reference genome
 ⁄ Identification of “variants” – i.e. positions where the 

sample deviates from the reference genome
 ⁄ Quality control to decide if sequencing has been successful 

Variant calling is done by connecting several different tools in a pipeline. The 
execution of these pipelines requires high-performance computing. A typical 
genome consists of 70 GB of raw data and the processing can take up to several 
days depending on method. To reduce the processing time, it must be parallelised, 
which increases the demand for computational power, or alternatively specialised 
algorithms and hardware (e.g. FPGA, GPU) can be used. Fully automating all 
data transfer and processing is necessary to minimise turnaround time. 

Assuring the quality and improving the sensitivity and precision of analyses is a 
continuous challenge as new software, lab protocols and reference data are developed. 

Variant interpretation 
This is the process of providing computational support to identify the relevance 
of each variant and selecting a subset for further manual evaluation.

 ⁄ Variant annotation – looking up what is known about 
each variant in different databases

 ⁄ Filtering and prioritisation of variants – automatically identifying 
the most relevant variants for further manual evaluation

 ⁄ Providing decision support for manual interpretation
 ⁄ Sharing of knowledge and data, and finding other similar patient cases

 
Variant interpretation is often the bottleneck of the diagnostic process due to the 
manual work required. Computational support is essential to identify the few relevant 
variants for manual evaluation from the over 4 million candidate variants in a patient 
genome. To effectively filter variants, information about each variant must be looked up 
in several databases and reference datasets. Combined with input from bioinformatic 
prediction tools and information about the patient’s phenotype, filtering algorithms and 
prioritisation tools can then reduce the number of variants for manual interpretation. The 
interpretation process itself is highly complex and requires decision support software. 
Tools for data sharing and finding of similar patient cases can increase the efficiency, 
quality and sensitivity of the diagnostic process.  
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7.3 COLORECTAL CANCER

Vegar Dagenborg (Oslo University Hospital), contributions by Jan F Nygård (The 
Norwegian Cancer Registry), Andrew Reiner (Oslo University Hospital), Vebjørn Arntzen 
(Oslo University Hospital), Vibeke Binz Vallevik (DNV), Bjørn Næss (DIPS) 

 
Colorectal cancer (CRC) is one of the most prevalent cancers in the developed world. Many 
patients have metastatic disease (metastatic CRC: mCRC) requiring multiple hospital visits and 
treatment options, and often longer periods of surveillance. Like with many other chronic disease 
states, the health records of mCRC patients can contain substantial amounts of data covering a 
considerable time span. Efforts are being made to set up high-throughput somatic gene sequencing 
in Norwegian precision medicine clinical trials, building on infrastructure developed in BigMed and 
the number of clinically important genomic biomarkers is expected to grow in the next few years. 

Box 19: Colorectal cancer (CRC) 

Treatment of CRC and subsequent mCRC frequently requires multiple hospital 
visits, varying therapy options, increased surveillance and genetic screening. 
This leads to an accumulation of a substantial amount of data. Using and 
understanding all of the data that is created by each patient, and accessing previous 
knowledge about similar patients to guide treatment can be challenging.

In BigMed we have focused on this patient group to create a dashboard that can combine 
each patients EHR data, and directly input relevant data from the Cancer Registry, to support 
clinicians in diagnostic and treatment strategies. The approximately 4500-yearly new patients 
in Norway suffering from CRC and mCRC may benefit from this merged-data approach, as new 
treatment strategies that are mapped to genetic profiles are explored and outcomes reported.

Additionally, the methodology for combining data sources, and approaches for overcoming 
associated challenges, can be used in clinical practice for the treatment of other diseases where 
combining multiple personal and public data sources could be beneficial. 

 
With the advent of genetic analyses – both patient and tumor specific – there are opportunities for 
finding more optimal and individualised treatment options. However, the amount and complexity of data 
available to clinicians when making therapeutic decisions can result in confusion rather than clarity.

7.3.1 The future of molecular diagnostics in colorectal cancer 
In BigMed, we envisioned an efficient future workflow where pertinent clinical information was easily 
accessible to clinicians, with particular focus on the multi-disciplinary team (MDT) setting, and 
where all the specialists and caregivers involved in patient treatment meet to decide on treatment 
options. In such a setting, there is a need for easy visualisation of complex patient cases. This involves 
an at-a-glance overview of previous treatments and important events in the patient history. 

With genomic information, advanced analyses of both radiological and histological images, and up-to-
date patient data available, each patient would be compared to similar patients and relevant guidelines 
presented in order to find the most optimal treatment plan. Better visualisations of treatment options 
would be helpful both for clinicians and in improving patient participation in care decisions. 
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The mCRC work package focused on three elements 
of the future vision: data visualisation, improved 
bidirectional flow of cancer registry data, and a data 
model for patient similarity developed in collaboration 
with Oslo Centre for Biostatistics & Epidemiology.  

7.3.2 Developing and deploying solutions
In BigMed, we developed a prototype clinical dashboard 
in the EHR, which draws up a timeline of previous 
treatments and hospital visits, and enables an indexing 
of important medical notes needed for the planned 
patient visit or meeting discussion. The clinical dashboard 
is also able to visualise data from patient similarity 
analyses or show important genomic variants.  

This project also addressed the need for clinicians to be 
able to explore relevant medical literature regarding the 
patient’s clinical and molecular characteristics, with the 
option of referencing and storing the source from the 
literature. This is a valuable way to document the body of 
knowledge available when the treatment plan is formed. 

Large patient data registers hold considerable potential 
value in cancer patient treatment decisions. At present, 
register data is slowly accumulated through a semi-
manual process, and data is analysed and published in 
years-long cycles. In BigMed, we hypothesised that more 
efficient reporting could increase register data quality and 

coverage, and that high quality cancer registry data could 
be used in real time to compare the current patient’s data 
with similar patients in the registry, informing treatment 
choices (see page 102, Patient Similarity Networks). 

Clinical utilisation of register data puts high demands on 
their accuracy. At present, the inefficient flow of clinical 
data from hospitals treating cancer patients is a bottle neck 
for registers like the Norwegian Cancer Registry. BigMed 
created a solution for this challenge. By harvesting data 
from the EHR with direct transfer from the clinical system 
to the Norwegian Cancer Registry, the data is more readily 
available. Bidirectional data exchange with registers requires 
communication protocols and parameter mapping and/or 
common information models. We made the process more 
efficient by defining variables as openEHR archetypes and 
by creating structured data in the EHR. We have also shown 
how algorithms can automatically retrieve cancer data from 
unstructured medical notes to populate structured forms.  

Clinicians need both human readable text and structured 
data for reuse. An automatic structuring of data with natural 
language processing (NLP) with direct transfer to research 
databases, registers, or other repositories, will facilitate the 
implementation of the other clinical decision support tools 
that are part of the future paradigm of precision medicine.   

Figure 12. Data flow to allow for clinical decision support. 
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BigMed use case  
Patient Similarity Networks

Through BigMed, Oslo Centre for 
Biostatistics & Epidemiology (OCBE) 
developed a proof-of-concept 
computational tool to predict the risk 
of relapse in patients with colorectal 
cancer. This tool used a novel technique 
called Patient Similarity Networks 
(PSNs), which utilises known data and 
outcomes from treated cases to predict 
the outcome of new cases. The PSN 
approach measures pairwise similarity 
between all cases in the training data set 
on a variable-by-variable basis, and then 
uses this information to create integrated 
similarity networks, with each patient 
pair given an integrated similarity score. 
This score combines the similarity scores 
from the separate variables and is a 
measure of similarity bases on input from 
all the modeled variables. The method 
then uses the integrated networks to 
categorize the treated cases into low-risk 
or high-risk groups. An optimized model 
is then built for each category, and a 
new case can then be compared to the 
two groups. The new case is assigned 
to the group that best matches it.

The model was built using netDx, 
a recently developed framework 
implemented in the R statistical 
language106. The model data was drawn 
from the Oslo-Comet trial107. The resulting 
classification system used a subset of the 
Comet data variables, which were selected 
through an iterative evaluation process 
that measured prediction performance. 
The variables selected are listed below; 
the classification accuracy was 76%:

• Age at liver resection
• Site of primary tumor
• Tumor stage
• Lymph node stage
• Gender
• CEA level at liver resection
• Chemotherapy prior to liver resection

The PSN approach to patient classification 
supports many of the principles of 
trust and transparency for automated 
systems. The model builders provide 
control and oversight over the data 
variables used to construct the model. 
While the model optimisation process is 
automated, the model builder chooses 

which data variables are used, and how 
the variables are encoded in the model. 

Data privacy can be enforced by using 
appropriate methods to encode the 
data. Using genomic data as an example, 
the model builder can avoid the risk of 
using potentially identifiable genomic 
profiles by aggregating the data (by 
using pathway data instead of gene-level 
data, for example) in a non-identifiable 
way. Likewise, patient age need not 
be explicitly represented in the data. 
In general, then, the resulting model 
contains encoded similarity scores, and 
not the primary, identifiable patient data.

PSN-based models have a high degree 
of interpretability and transparency. 
The process is visible to the model 
builder, who can examine which 
variables were selected for the model, 
and which weights were assigned. 
Additional parameters can be examined 
and set to affect the outcome.

More info: BigMed/Reiner 2021, Patient 
Similarity Networks for Precision Medicine.

Patient data
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Tumor stage

Tumor location

Pairwise patient 
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Pairwise patient 
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Best match:
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Compare 
patient case

High risk 
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Similarity 
score high 
risk category: 
14.8 

Similarity 
score low
risk category: 
28.2

Low risk 
category

Box 20

https://bigmed.no/assets/Reports/patient_similarity_networks_for_precision-medicine_version_1.pdf
https://bigmed.no/assets/Reports/patient_similarity_networks_for_precision-medicine_version_1.pdf
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8. Final reflections on 
the BigMed project 

In 2016 the BigMed project set out with the ambitious 
goal of addressing the barriers to clinical implementation 
of precision medicine and to pave the way for big data 
analysis in healthcare. The project was made up of a 
diverse group of stakeholders from the clinic, industry, 
and academia. There were as many motivations and 
aspirations as there were people engaged in the project, 
yet a cooperative focus on the common vision helped 
move us forward in paving the way for those following 
us. The ambitions were met through achieving the 
key elements described in the following section.

8.1 ITERATIVE DEVELOPMENT IN 
CROSS COMPETENCE TEAMS

The work in BigMed used three model clinical areas 
– colorectal cancer, rare diseases and sudden cardiac 
death – to identify needs, develop solutions, and address 
issues. Although several IT solutions have been created, 
commercialized, and/or implemented at the end of the 
project, the biggest advancement has been knowledge 
development enabled through a meeting place for debate. 

As we solved one bottleneck in the project, we would 
uncover several new bottlenecks. Solutions had to 
be constantly modified and adapted, underlining the 
need for iterative development and organic growth. 

Developing specific solutions to barriers allowed our 
discussions to be more detailed and concrete. The peer-to-
peer connections have been key, as has the experimentation 
format. Initially, we would often underestimate the barriers 
and misidentify the real issues. By working through the 
concrete cases in cross competence teams of technologists, 
biologists, informaticians, clinicians, geneticists, engineers, 
lawyers, and economists we overcame these hurdles. 
Some were technical and could be solved within the 
group, others were related to frame conditions and were 
elevated to decision makers or other stakeholders for 

debate. The legal team established a network for lifting 
legal issues that needed clarifications or changes in 
the law, where the technical experts could be invited to 
share their knowledge and to highlight the issues. By Q1 
2021, the effort of the legal team had already resulted 
in several proposed changes to the Norwegian law.

8.2 SAFEGUARDING DIGITAL HEALTHCARE
In a data driven healthcare ecosystem, different partners 
need to work together. In the interfaces between partners 
and processes there is a need for trust mechanisms 
on many levels, from standardized data formats and 
APIs, qualification of digital tools for a specific scope 
of use, processes to define and assure data quality 
and safety, and robust governance systems. 

The new medical device regulations (MDR and IVDR) that 
is expanded to envelope software, have the intention of 
safeguarding patient safety through setting requirements 
for professional manufacturers and in-house developers. 
In addition to this, we need to address the safe application 
of new tools when they are used “off label”, through 
support for proper validation and testing, understanding 
the uncertainty in results, and the bias in data.

8.3 A NEW PERSPECTIVE ON DATA USE 
Implementation of NGS gave us the opportunity to 
investigate an interesting data-intensive case that 
exemplifies the needs of a data-driven healthcare future 
that is increasingly tailored to the individual patient. We 
see genomics medicine as a model for providing insight 
on how data can be used to directly benefit the patient. 
Analysis of large data is a necessity which fuels a higher 
demand for IT competence integrated in clinical practice. 

Today, this is a constant challenge in a system where health 
data, as a rule, should not be used for other purposes 
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than documentation of one pertaining patient. Protecting 
privacy is key to maintaining trust between patient and 
healthcare provider. Still, we need to make exceptions to 
this rule – for quality assurance, for statistics, for research, 
and for clinical genomics where we need to compare other 
patient’s data to reach a diagnosis for the next patient. 
These activities are important for good quality healthcare 
and to ensure our patients get the best available treatment. 
All the exceptions to the rule make it a confusing and 
difficult landscape to operate in, allowing for different 
interpretations and an uncertainty that causes paralysis. 

We believe we need to change our current perspective on 
data use and look to other examples, such as the ways the 
Danish Government uses data, for inspiration and guidance. 
We believe the rules should be written so that health data 
can be used to deliver up to date healthcare to patients 
in a safe way that balances and protects our privacy. 

Implementation of precision medicine will move forward 
as the sum of many smaller decisions. A shared vision 
and understanding between all stakeholders is important 
when choosing the solutions of today. In 2012, the UK 
started their 100.000 genomes project with the following: 
“Over the next 10 years our ambition is to create the 
most advanced genomic healthcare system in the 
world, underpinned by the latest scientific advances, 
to deliver better health outcomes at lower cost.” 108

We believe that a similarly clear message from the 
government and shared vision for Norwegian healthcare 
would support and accelerate the development of  
precision medicine. 

8.4 AN ORGANISATION DESIGNED FOR CHANGE 
Hospitals would benefit from development of a data 
strategy to facilitate the use of patient data for healthcare 
benefits. Considerations will include: what data do we 
need to start storing and in what formats? And what 
roles and responsibilities do we need for this? 

In 2017, a BigMed stakeholder group identified legal 
issues as the biggest barrier to implementation of 
precision medicine. At the closing seminar of the project 
three years later, “organisation” was voted the biggest 
challenge when evaluating the same barriers. Many of the 
legal issues have been clarified, and there is a clear road 
ahead. The alignment of interpretation between different 

organisational entities and different roles is still to be done. 

The experience from our project shows a hospital system 
resistant to change and not constructed for continuous 
improvements. Incentives for change are often lacking 
at the decision makers level, as the unit benefiting from 
a change will often not be the same as the unit having 
to do the work or pay. “No change” will undeniably equal 
“no increased risk” for many parts of the system. 

The ability of healthcare organisations to adjust and 
facilitate iterative development processes, both on a 
practitioner level and across the key-decision-maker 
landscape, are necessary for implementation of new 
technologies. The traditional hierarchical decision structure 
in public healthcare is posing a challenge to this. Roles 
and mandates can seem unclear for practitioners when 
observed from within the complex system. We saw an 
example of this when failure to agree on ownership of 
the IP address to a fibre optic cable inhibited attempts to 
move from manual data transfers to a cable between the 
hospital system and the research cloud at the University. 

We need to clarify ownership of decisions and facilitate 
freedom of decision making at the right and competent 
level to avoid important processes getting lost in 
the maze that is the decision structure today. 

8.5 BUILDING ON THE BIGMED LEGACY 
The tools, solutions, and infrastructure created by BigMed, 
coupled with documented knowledge from the project, are 
fundamental to building new initiatives. Key competence 
and tools for NGS were brought into new precision 
medicine initiatives like InPreD at OUH, an infrastructure 
for clinical trials in molecular diagnostics in cancer. 

Permanent groups and networks have been established to 
continue the best practices established in BigMed. The legal 
network has developed into Nordic Permed Law, and will 
continue in the role, building on a Nordic group of legal 
experts. 

The balance between structured data and free text has been 
an important discussion throughout the project. Structured 
data are easily reused, yet clinical descriptions can rarely 
fit in a standard box. We see the value of both approaches 
and believe they need to co-exist moving forward, with 
each addressing different needs. Continued research on 
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In which area do you see the biggest barriers to the implementation of precision medicine?

Figure 13. Biggest barriers to precision medicine in 2020. Source: BigMed 2020 conference (October 2020). 
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NLP and the creation of Norwegian clinical word vectors to 
harvest the rich context found in free text has gathered an 
NLP research network of clinicians, academics and industry 
partners from within the BigMed project and beyond.

Peer-to-peer discussion has been very valuable. Through 
BigMed, the ICT service provider of the region built a 
platform for innovation and used the process to map out 
and understand the future clinical needs for ICT. This kind 
of discussion forum between the clinical IT needs and the 
infrastructure provider may continue through the network 
of connections already made. BigMed has also been part 
of establishing a national competence sharing network for 
AI in healthcare (KIN) to ensure peer to peer discussions 
and for sharing the learnings from future initiatives. 

With a vision of laying the foundation for clinical 
implementation of precision medicine, BigMed started by 
identifying barriers to implementation and set out to address 
these. We have not produced a complete recipe for how to 
overcome these barriers. Instead, the project has created 
specific solutions within the three model clinical areas, paired 
with an even more detailed understanding of the barriers. 

Moving forward, more specialised initiatives that follow from 
BigMed will each carry on developing solutions and bringing 
important discussion topics to the stakeholders and the 
public. The right setup for allowing incremental changes 
in our system will allow us to continue working towards 
our common goal of implementing precision medicine in 
the healthcare system for the benefit of our patients. 

8
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Appendix: Deliverables overview

Deliverables Result Partners

Bioinformatics pipeline for somatic cancer: RNA sequencing and Whole exome DNA sequencing

Somatic variant calling analysis pipelines: 
Gene panel DNA sequencing

Tool OUH

List of requirements for a functional pipeline Knowledge OUH

Somatic genomic feature report WES Tool OUH

Quality control report – cancer Tool OUH

True negatives: CAllable CAncer lOci  (CACAO) Tool OUH

Somatic RNA-Seq pipeline Automated process OUH

Bioinformatics pipeline for somatic cancer: Germ-line whole genome sequencing

Dragen pipeline for "high speed pipeline" 
analysis of whole genome seq trios

Automated process OUH

Quality control scheme (multiQC ++) Knowledge/Process OUH

Report on filtering of technical (false) variants Tool OUH

Genomics based reports and clinical reports   

Cancer Predisposition Sequencing Report (CPSR) Tool OUH

Cancer Predisposition Sequencing Reporter 
(CPSR): a flexible variant report engine for high-
throughput germline screening in cancer, Sigve 
Nakken, Vladislav Saveliev, Oliver Hofmann, Pål 
Møller, Ola Myklebost, and Eivind Hovig, 2020

Paper OUH

Personal Cancer Genome Report (PCGR) Tool OUH

Personal Cancer Genome Reporter: variant 
interpretation report for precision oncology, 
Sigve Nakken, Ghislain FournOUH, Daniel 
Vodák, Lars Birger Aasheim, Ola Myklebost and 
Eivind Hovig, Bioinformatics, 2018, 10: p. 1778

Paper OUH

Clinical reporting of NGS data: A 
systematic Nordic collaborative, peer-
reviewed benchmarking, DNV, 2018

Report DNV 

Molecular reporting and decision 
support in Dashboard

Demo OUH

 
The list below is an attempt of mapping deliverables from the project that are confirmed per February 2021 and 
is not exhaustive to all the work and the knowledge generated through the cooperation between partners.
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Deliverables Result Partners

Standards development and best practices for NGS 

Accuracy and efficiency of germline variant calling 
pipelines for human genome data, Sen Zhao, Oleg 
Agafonov, Abdulrahman Azab, Tomasz Stokowy 
and Eivind Hovig, 2020, Scientific Reports. 10

Paper OUH, DNV 

Implementing NGS-based diagnostics in 
cancer care: Technical and organisational 
factors in the Nordics, DNV, 2021

Report DNV, OUH

Regulatory frameworks and quality 
assurance for NGS-based diagnostics

Report DNV  

Mapping of molecular diagnostics for 
cancer in the Nordic countries

Report DNV  

Clinical decision Support Software; 
Regulatory landscape in Europe from 
May 26th 2020, DNV, 2020.

Report DNV  

Clinical sequencing: Regulatory 
frameworks and quality assurance for 
NGS-based diagnostics, DNV, 2018

Report DNV  

Organisational maturity assessment for NGS labs Knowledge - Recommended 
practice 

DNV OUH 

Consent for clinical genetic testing in 
Norway Considerations to the development 
of process and content, DNV, 2020

Report DNV, OUH

High speed pipeline for NGS   

Drivers in rapid genetic diagnostics for 
rare diseases in infants, DNV, 2019

Report DNV 

Suggesting Reasonable Phenotypes to Clinicians, 
Laura Slaughter and Dag Hovland, 2019

Paper UiO, OUH, DIPS 

E-requisition with structured phenotypes Product DIPS, OUH, UiO 

EHR models for semantic support 
on structured phenotyping

Demo UiO, OUH 

Mapping of ontologies for structured phenotyping Knowledge UiO 

NICU high speed NGS pipeline (case) Product OUH DMG

Use of structured phenotyping in 
ELLA (variant classification)

Product OUH DMG

Product OUH DMG

Genomic reference database version 1 and 2   

Design documents - functional and 
technical requirements for genomic decision 
support databases (TVX demo)

Knowledge DNV
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Deliverables Result Partners

Germline genomic medicine: A BigMed 
needs analysis, DNV, 2020

Report DNV

Norvariome 1 - first version reference database 
(VCF collection with diagnostic samples 
consented for research and pseudonymized)

Demo OUH DMG

Demonstrator and proof of concept for secure sharing of genomic data across European borders

Variant Exchange - Sharing of 
interpreted genomic variants 

Tool & service DNV, OUH, Scilife Lab /Karolinska 

Beacon - online sharing of single 
variants (GA4GH Beacon service)

Implemented & 
demonstrated solution

OUH, Scilife Lab /Karolinska 

Matchmaker exchange - secure sharing/
querying of variants in context and 
with HPO phenotype (GA4GH)

Implemented & 
demonstrated solution

OUH, Scilife Lab /Karolinska 

Risk assessment of federated sharing /
matchmaker exchange 

Knowledge DNV, OUH

Variant interpretation decision support software   

Decision support for copy number variant 
interpretation (Ella core functionality)

Product OUH DMG & RAD

Report on verification and validation approaches 
for variant interpretation decision support 
software (incl. ML/AI, MDR/IVDR) ("Clinical 
decision support software - Regulatory 
landscape in Europe from May 26th 2020")

Report DNV

Infrastructure and data provisioning   

Mapping of needs for innovation zone Knowledge Sykehuspartner, OUH, IBM, DNV, DIPS, 
PubGene, Kunnskapsforlaget, UiO, Ahus 

Data provisioning SP - pipeline for 
text extraction for EHR

Process OUH ICT, DIPS, UiO, SP

Data provisioning Ahus - pipeline 
for text extraction for EHR

Process OUH ICT, DIPS, UiO, SP

Project sandbox in TSD Product UiO ICT 

Architecture for BIGMED Integrations 
(BIGMED-zone RIF)

Report (internal) SP, OUH ICT

BigMed zone innovation platform with 
pipelines for data extraction (on RIF) 

Product Sykehuspartner, OUH ICT, IBM, DNV, DIPS

Risk analysis (BIGMED-zone in RIF) Report (internal) OUH ICT, DNV, IBM, DIPS, UiO, SP

MaxManus- automatic anonymisation for free text Process and tool OUH ICT, DIPS, UiO, SP

Seminar series between partners Knowledge sharing OUH, Sykehuspartner 

Digital consent solution in TSD Product OUH ICT, UiO, SP
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Deliverables Result Partners

Generic deliverables legal group  

Legal network meetings Knowledge sharing UiO, OUH

Establishing Nordic Permed Law Network UiO, OUH, DNV 

BigMed legal conference 1 ( juni 2018) Conference UiO, OUH 

BigMed legal conference 2 (nov 2019) Conference UiO, OUH, DNV 

Dialogue and discussions with regulators Knowledge UiO, OUH

Regulation of NGS   

Report: BigMed-konferansen 2019: 
Rettslige reguleringer av persontilpasset 
medisin, BigMed, 2019

Report OUH, UiO

Persontilpasset medisin - rettslige 
perspektiver, Anne Kjersti Befring, 2019

Book UiO 

Artikkel om genetiske varianters rettslige 
stilling. Enkeltstående fortolkede 
genetiske varianter er anonyme.

Paper UiO, OUH

AI for clinical use and secondary use of data   

Master thesis by Gjertrud Bøhn Magelli: 
Regulation of AI in Healthcare 

Report UiO 

Kunstig intelligens og big data i helsesektoren, Anne 
Kjersti Befring and Inger-Johanne Sand, 2020

Book UiO 

Blog on regulating PM in Dagens medisin Blog UiO 

Risk calculator for sudden cardiac death (SCD) Tool OUH, DIPS 

ML: Automatic echo measurements for 
input to calculator (machine learning)

Demo of method Inmeta /OUH 

Mapping of clinical needs based on design thinking Report (internal) IBM, OUH

Product strategy based on AI Knowledge DIPS

Natural Language Processing (NLP)   

NLP and early risk identification   

NLP: Identification of patients at risk for SCD 
from electronic medical journal, identification 
of “syncope” to populate risk calculator.

Demo of method Ahus & IFI LTG

Building a Norwegian Lexical Resource for 
Medical Entity Recognition, Ildikó Pilán, 
Pål H. Brekke, Lilja Øvrelid, 2020

Paper UiO, OUH
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Deliverables Result Partners

NLP: Pedigree tool- Extraction from free text - 
family relations relevant for medical condition

Demo & product Ahus & IFI LTG, OUH

Dahl, F.A., Rama, T., Hurlen, P. et al. Neural 
classification of Norwegian radiology reports: using 
NLP to detect findings in CT-scans of children. 
BMC Med Inform Decis Mak 21, 84 (2021). 

Paper Ahus & IFI LTG

Iterative development of family history annotation 
guidelines using a synthetic corpus of clinical 
text, Taraka Rama, Pål H. Brekke, Øystein Nytrø 
and Lilja Øvrelid, ACL Anthology: Proceedings of 
the Ninth International Workshop on Health Text 
Mining and Information Analysis; 2018. 18: p. 111

Paper UiO, NTNU, OUH

Synthetic data set of clinical texts for NLP Available online OUH

Word vectors Demo & applications Ahus 

Data access and data flow for colorectal cancer   

Dashbord with timeline in the Electronic 
Health Register (EHR), DIPS arena

Tool DIPS, OUH 

Data extraction from registries to populate 
patient timeline – previOUH disease incidents.

Knowledge CR, DIPS, OUH 

Open EHR Archetypes definition for structured 
report to cancer registry, saving valuable clinician 
time and improving valuable data gathering

Knowledge OUH ICT, OUH, DIPS 

Automatic reporting tool from 
EHR to the cancer registry 

Tool DIPS, OUH, Cancer registry 

Research data capture directly in EHR – (ProtheCT) Clinical test DIPS, OUH 

Text mining from electronic health record 
for automatic population of Dashboard 
- NLP testcase for WatsonExplorer

Demo IBM, OUH

DPIA for Access to data for Machine learning Example and template DNV, OUH 

Patient similarity 

Patient similarity classifier predictor Tool OUH OCBE

Patient similarity networks for 
precision medicine, OUH, 2021

Report OUH OCBE 

Boolean search for research articles Tool PubGene, OUH

Indexed English dictionary for research articles Tool PubGene, OUH

Personalised statistics tool based 
on cancer registry data 

Application Cancer registry, OUH 
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Deliverables Result Partners

Dissemination   

Big data management for the precise treatment 
of three patient groups, BigMed, 2018

Report DNV, all partners 

Podcast series: Clinical implementation 
of precision medicine (Norwegian) 

Podcast All partners 

Oslo Health hackathon 2019 for cancer Event DNV, Acando, Norwegian 
Cancer society, OUH

Establishing KIN - AI in Norwegian healthcare 
(Kunstig Intelligens i Norsk helsetjeneste) 

Network DNV, OUH, UiO, Health regions. 

Digital webinar: BigMed at EHiN 2020, 
demonstrating practical solutions 

Recording Sykehuspartner, DNV, OUH, 
DIPS, Cancer registry 

Digital webinar: Precision Medicine:  
A Health Economics Perspective

Recording UiO, OUH 

Digital webinar: NLP in Health – What 
is Possible, Useful and Allowed?

Recording Ahus, UiO 

Digital webinar: BigMed-konferansen 
2020: Veien til presisjonsmedisin

Recording All partners 

Digital webinar: Federated Analytics of Health Data Recording DNV, Cancer registry 

Digital webinar: Real-World Data, digitalisation 
and decentralisation of future clinical trials

Recording DNV, OUH
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Akershus University Hospital
The analysis department provides  
data extraction services for 
all purposes in the hospital. In 
NLP projects, we provide both 
infrastructure, preprocessing of 
data and analyzes. Works closely 
with research environments at 
the hospital with, for example, 
large clinical text corpus.

Lars Åge Møgster,  
Head of Analytics
ahus.no

DIPS 
DIPS aims to enable data collected 
in the DIPS record, including 
genomics data, to be processed 
and analysed to support precision 
medicine under the BigMed project. 

Liv Bollvåg, Head of Research
dips.com/no

DNV 
DNV is the independent expert in 
risk management and assurance, 
operating in more than 100 countries. 
Through its broad experience and 
deep expertise DNV advances 
safety and sustainable performance, 
sets industry benchmarks, and 
inspires and invents solutions. DNV 
is a founding partner of the Nordic 
Alliance for Clinical Genomics. 

Stephen McAdam,  
Director of Digital Health
dnv.com

Norwegian Armed Forces
Joint medical services. Supporting 
BigMed activities by learning from 
current initiatives in Norwegian 
military medicine in using big data 
methodologies for medical challenges 
in cold weather and arctic operations.

Hjelle, Brigader 
forsvaret.no

The Cancer Registry of Norway 
Providing decision support tools based 
on data in the clinical cancer registries

Jan F. Nygård 
kreftregisteret.no

IBM 
IBM’s strategy is to be an essential 
partner to organisations that want 
to digitally transform their business 
model using AI technologies based 
on a hybrid cloud platform. Using 
data as the driver for transformation, 
IBM delivers its Watson AI services 
and technologies to extract 
value from any type of data.

Loek Vredenberg, CTO IBM Norge
ibm.com/no-en

Karolinska Institutet / SciLifeLab 
The clinical genomics facility provides 
a dedicated research infrastructure 
for projects utilising massively 
parallel / next generation sequencing 
technologies. The facility serves 
as a competence centre assisting 
the translation of genomics-based 
tools to routine clinical care. 

Valtteri Wirta, Director of 
Clinical Genomics Facility 
scilifelab.se

Kunnskapsforlaget, 
Gyldendahl Norsk Forlag 
As part of Gyldendahl, 
Kunnskapsforlaget provides tools 
for extracting knowledge from 
unstructured and structured 
texts, and to resolve ambiguity 
and prepare texts for language 
technology analysis and output.  

kunnskapsforlaget.no

The Norwegian Heart and Lung 
Patient Organisation (LHL) 
LHL closely follows up patients 
with heart and lung disease and 
their relatives before, during and 
after treatment through research, 
political influence, public awareness, 
and professional treatment. 

Are Helseth, Medical Director
lhl.no

Norwegian Cancer Society 
(Kreftforeningen) 
The Norwegian Cancer Society (NCS) 
is one of the largest organisations 
in Norway representing the voices 
of those affected by cancer.

NCS works continuously to improve 
society’s attitude to the prevention 
and treatment of cancer. We fight 
cancer locally, nationally and 
globally through research and 
preventive measures, information, 
support, advice and lobbying. 

Ingrid Stenstavold Ross,  
Secretary General
kreftforeningen.no

Appendix: Consortium partners

https://www.ahus.no/
https://dips.com/no
https://dnv.com
https://forsvaret.no
https://kreftregisteret.no
https://ibm.com/no-en
https://scilifelab.se
https://kunnskapsforlaget.no
https://lhl.no
https://kreftforeningen.no
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Norway Health Tech 
An organisation to support and 
accelerate the development of new 
medical technology and e-health 
products, services and innovative 
solutions for the Norwegian 
and global health markets. 

Kathrine Myhre, CEO
norwayhealthtech.com

Norwegian University of Science 
and Technology (NTNU)
Faculty of Information and Technology 
and Electrical Engineering, Department 
of Computer Science 
Conducting research in the fields 
such as artificial intelligence, big data, 
computer architecture, computer 
graphics, computer security, databases, 
human computer interaction, 
information systems, operating 
systems, and software engineering. 

Øystein Nytrø, Associate Professor
ntnu.edu/idi

Oslo University Hospital, 
Department of Medical 
Genetics (DMG) 
DMG is the largest medical genetic 
department in Norway studying 
hereditary diseases and performing 
research on genetic causes of disease. 

Dag Erik Undlien,  
Professor and Head of DMG
med.uio.no/klinmed/om/organisasjon/
klinikker/laboratoriemedisin/
medisinsk-genetikk/index.html

Oslo University Hospital, Institute 
for Cancer Research, Department 
of Tumour Biology 

Engaged in basic and translational 
cancer research all the way from 
experimental research on model 
organisms and human materials to 
clinical trials for advanced medical 
research across sciences, including 

genomics and bioinformatics, for 
individualised diagnostics and 
treatments for cancer patients. 

Eivind Hovig, Professor
ous-research.no/tumorbiology

Oslo University Hospital, the 
Intervention Centre 
Multidisciplinary centre to develop 
new treatment methods for patients, 
for example, new algorithms for 
processing and understanding 
complex, large amount of data 
for high precision diagnosis, 
treatment, and follow-up. 

Erik Fosse, Head of  
the Intervention Centre
ous-research.no/interventionalcentre

Oslo University Hospital, 
Legal Department to Oslo 
University Hospital CEO 
OUS legal department dedicates 
resources to engage in research 
to identify and address the legal 
issues that need changing to 
meet the future of healthcare.

Randi Borgen, Legal director

Oslo University Hospital, ICT 
Working on a strategic level to 
ensure optimal environment in 
regard to technical, software 
and workflow issues, suitable to 
support innovation and research 
in advanced medical treatment.

Sissel Jor, Section Manager

Oslo University Hospital, OCBE 
Develops and applies statistical and 
machine learning methodology and 
algorithms to (i) extract understanding 
from clinical and genomic data and 
(ii) make predictions of future events 
/ conditions. Biomarker discovery. 

Patient safety monitoring based 
on electronic health records. 

Arnoldo Frigessi, Director of OCBE
med.uio.no/imb/english/
research/centres/ocbe

Pubgene 
Patented biomedical research text 
mining (Coremine) for mining evidence 
for better diagnoses and possible 
treatments for every single patient. 

Odd Arild Lehne, CEO
pubgene.com

Sykehuspartner 
Shared IT services provider for 
hospitals in the South-Eastern 
health region of Norway.

Alia Zaka, Head of Development 
and Innovation, Customer services 
sykehuspartner.no

The Norwegian Association 
for Children with Congenital 
Heart Disease (Foreningen 
for Hjertesyke Barn) 
The Foundation aims to improve the 
overall quality of life of children with 
heart defects by supporting research 
addressing physical, psychological, 
social and spiritual aspects 
towards an integrated approach. 

Marte Jystad, Special Adviser 
ffhb.no

University of Oslo, 
The Faculty of Law 
The faculty of law has established 
courses on precision medicine and 
dedicates resources to engage in 
research to identify and address 
the legal issues that need changing 
to meet the future of healthcare. 

Anne Kjersti Befring,  
Assistant Professor
jus.uio.no

https://norwayhealthtech.com
https://ntnu.edu/idi
https://med.uio.no/klinmed/om/organisasjon/klinikker/laboratoriemedisin/medisinsk-genetikk/index.html
https://med.uio.no/klinmed/om/organisasjon/klinikker/laboratoriemedisin/medisinsk-genetikk/index.html
https://med.uio.no/klinmed/om/organisasjon/klinikker/laboratoriemedisin/medisinsk-genetikk/index.html
https://ous-research.no/tumorbiology
https://ous-research.no/interventionalcentre
https://med.uio.no/imb/english/research/centres/ocbe
https://med.uio.no/imb/english/research/centres/ocbe
https://pubgene.com
https://sykehuspartner.no
https://ffhb.no
https://jus.uio.no
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University of Oslo, Institute 
of Health and Society
Estimating cost-effectiveness 
of precision medicine, which 
a specific focus on small 
non-randomised control trials. 

Eline Aas, Associate Professor 
med.uio.no/helsam

University of Oslo, Services for 
Sensitive Data (TSD) 
TSD is an e-infrastructure which 
meets the strict requirements 
of the law for the treatment and 
storage of sensitive biomedical (and 
other sensitive) research data. 

Gard Thomassen, Assistant Director, 
Department for Research Computing 
uio.no/tjenester/it/forskning/sensitiv

University of Oslo, Department 
of Informatics, Language 
Technology Group (LTG) 
Language Technology comprises 
theoretical and applied informatics 
that seeks to enable computers to 
‘make sense’ of human language. 
LTG performs data-driven 
linguistic analysis of text using 
machine learning and HPC. 

Lilja Øvrelid, Associate Professor
mn.uio.no/ifi/forskning/grupper/ltg

University of Oslo, Department 
of Informatics, Logic and 
Intelligent Data (LogID)
The work in LogID is based on 
well-established methods from logic, 
which they extend and enhance to 
tackle tomorrow’s challenges in fields 
like Semantic Web and Big Data. 

Arild Waaler, Professor 
mn.uio.no/ifi/english

https://med.uio.no/helsam
https://uio.no/tjenester/it/forskning/sensitiv
https://mn.uio.no/ifi/forskning/grupper/ltg
https://mn.uio.no/ifi/english
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Artificial Intelligence 
Artificial intelligence (AI) makes it possible for machines run by 
computers to learn from data and interaction with an environment, 
to adapt to new inputs and perform human-like tasks. Computers 
run machine learning algorithms to make decisions. Statistics 
delivers the understanding of risk and uncertainty. Robotics 
allows to translate decisions into physical actions. There is 
research ongoing that aims to produce algorithms that learn 
what to learn, and in this way express more autonomy. 

Big Data 
Big data describes data sets which are larger than usual for 
the domain of action. Their physical dimension is therefore 
variable. In Genomics, for example, big data might be of some 
GB; in sensor data we easily speak about TB and more. Big 
data are both designed and collected for a specific purpose or 
repurposed. The noise level of big data is varying, but can be 
very high, with elements of bias and informative missingness. 

Clinical decision support software  
A clinical decision support system (CDSS) is a health information 
technology system that is designed to provide physicians and 
other health professionals with clinical decision support (CDS), 
that is, assistance with clinical decision-making tasks. 

Digital ecosystem
A digital ecosystem is a group of interconnected 
information technology resources that can function as a 
unit. Economic definition: «Two or n-sided markets that 
grow by network effects, not on traditional economies of 
scale». (Parker, van Alstyne, Choudary 2014). Technical 
definition: «A digital ecosystem consists of the collection 
of platform and the apps specific to it». (Tiwana, 2013).

Federated data sharing 
Also known as: Decentralised data sharing, as opposed 
to centralised sharing. Traditionally, data resources have 
been stored, managed and processed within a centralised 
server. A decentralised approach utilises a distributed 
architecture of multiple independent machines that cooperate 
on storage, management and processing of data.

Federated network
A federated network is based on multiple networks or locations 
operating under agreed protocols with shared resources.

Genomic medicine 
Use of genomic information generated by exome/
genome sequencing as part of clinical care for 
diagnostic or therapeutic decision-making

Machine learning  
Machine learning is a method of data analysis that automates 
model building for the purpose of prediction, classification, 
estimation and decision making. ML produces algorithms 
which can learn from data, identify patterns in data that allow 
to perform prediction, classification, estimation tasks and 
decision making. Statistics is very closely related to machine 
learning, but focuses more on uncertainty quantification 
and explainable models. ML is one of the pillars of AI.

MDR and IVDR
The EU mandated medical device and in-vitro device regulation 
will come into effect in May 2021 and May 2022. The MDR is the 
ruling regulation, with the IVDR aligning on MDR principles for the 
regulation of in-vitro diagnostics devices (including software). The 
MDR includes a wider inclusion definition of medical devices than 
in the earlier MDD: to include all devices which provide information 
used in medical prediction or prognosis of human beings (article 
2(1)), specific caveats addressing technologies created within 
health institutions ‘in-house’ (article 5(5)), and re-classification 
of software as higher risk (according to rule 11 – Annex VIII). 

OpenEHR
OpenEHR is a community driven non-profit IT platform 
for e-health, consisting of specifications, clinical models 
and software that can be used to create standards 
for building and storing information in healthcare 
and interoperability solutions for healthcare.

Precision medicine 
Precision medicine is a medical model that proposes the 
customisation of healthcare, with medical decisions, practices, 
or products being tailored to the individual characteristics 
of a patient. Customisation of medicine to individuals means 
taking into account all relevant sources of information, from 
biomarkers like a person’s genes, to social attributes.

RWD/RWE
Real world data can be defined as routinely collected 
data relating to a patient’s health status or the delivery of 
health care from a variety of sources other than traditional 
clinical trials. Real world evidence is the clinical evidence 
that can be derived from analysis of this data. 

Definitions
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Ahus  Akershus University Hospital 
AI Artificial Intelligence 
AI HLEG  The High-Level Expert Group on AI  
AIMD  Active implantable medical devices 
AI-MDSW Artificial Intelligence- 
 Medical Device Software 
ALTAI  Assessment List for  
 Trustworthy Artificial Intelligence 
API  Application programming interface 
CDS Clinical decision support 
CEA  Cost-effectiveness analysis 
CNN  Convolutional neural network 
CPSR  Cancer Predisposition Sequencing Reporter 
CRC  Colorectal Cancer 
CT Computed tomography
CUA  Cost-utility analysis 
DMG  Department of Medical  
 Genetics at Oslo University Hospital
DNA Deoxyribonucleic acid 
DRUP  Drug Rediscovery Protocol 
ECG  Electrocardiogram 
EHR  Electronic Health Records 
EMA  European Medicines Agency 
FHIR  Fast Healthcare Interoperability Resources 
GA4GH  Global Alliance for Genomics and Health 
GDPR General Data Protection Regulations
HCLS  Health Care and Life Sciences
HCM  Hypertrophic Cardiomyopathy 
HCN  Health Compute Norway 
HCPs  Health care providers 
HL7  Health Level 7 
HOD  Health and Care Services 
HPC  High Performance Computing 
HPO  Human Phenotype Ontology 
HTA  Health technology assessments 
HTS   High Throughput Sequencing or screening 
IAM  Identity and Access Management 
ICD-10  International Classification of Diseases 
ICER  Incremental cost-effectiveness ratio 
ICGC International Cancer Genome Consortium
ICT  Information and communications technology 
InPreD Infrastructure for precision diagnostics 
IVDD  In Vitro Device Directive 
IVDR In vitro device regulations
KIN  National competence  
 sharing network for AI in healthcare 
LDT  Lab developed test 
LIMS Laboratory Information Management System

LSTM  Long-short term memory 
MDCG Medical Device Coordination Group
MDD  Medical Device Directive 
MDR Medical device regulations
MDSW Medical device software 
ML  Machine learning
MRI Magnetic resonance imaging 
NACG Nordic Alliance for Clinical Genetics
NEM  National ethics committee 
NGS Next generation sequencing
NICU  Neonatal Intensive Care Unit 
NLP  Natural Language Processing 
NOMA  Norwegian Medicines Agency 
NPV  Net present value  
NTRK  Neurotrophic Tyrosine Receptor Kinase 
OCBE  Oslo Centre for Biostatistics & Epidemiology  
OUH  Oslo University Hospital 
PCAWG Pan-Cancer Analysis of Whole Genomes
PM  Precision Medicine 
PROMS  Patient Reported Outcome Measures
PREMS  Patient Reported Experience Measures 
PSA  Probabilistic Sensitivity Analysis 
PSN  Patient Similarity Networks 
PVO  Privacy ombudsman 
QALYs  Quality-adjusted life-years 
QC  Quality control
RCN  Research Council Norway 
RCTs  Randomised clinical trials 
REC  Regional ethics committee 
RNA Ribonucleic acid
RWD Real World Data 
RWE  Real World Evidence 
rWGS rapid whole genome sequencing
SCA  Sudden Cardiac Arrest 
SCD  Sudden Cardiac Death 
SEN  South-Eastern Norway health region
SIEM Security information  
 and event management  
SNOMED CT  Systematically organized computer  
 processable collection of clinical terms
SNP  Single Nucleotide polymorphism 
SVM  Support Vector Machines 
TSD  Services for Sensitive Data 
UIO  University of Oslo 
WES   Whole exome sequencing
WGS  Whole genome sequencing
SW Software
TAT Turnaround time

Abbreviations
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