Annual report 2008

The Interventional Centre

Rikshospitalet University Hospital
ANNUAL REPORT 2008
The Interventional Centre

4 Organisation chart
5 New technologies
6 Main goals and objectives
8 Research groups
19 Scientific statistics
20 Budget and expenditures
21 Patent applications
22 Academic partners 2008
25 Commercial partners
27 Publications
45 Members of the Advisory Board

ANNUAL REPORT 2008
More information at the web pages: www.ivs.no
PUBLISHER: Rikshospitalet University Hospital
SAMPLES: 500
LAYOUT: TorDesign
PRINT: Møklegaard Print Shop AS, 2009
Organisation

THE INTERVENTIONAL CENTRE 2008
RIKSHOSPITALET UNIVERSITY HOSPITAL
During 2007 most of the heavy imaging technology at the Interventional centre was changed. The open, interventional magnet was removed, and a 3T high field MR from Phillips was installed. The seven year old angiographic system was also removed and the Interventional centre started a collaboration with Siemens to develop the Zeego system for an OR environment. Thus 2008 started with projects in two completely new systems.

The 3T magnet was provided both for imaging research and for intraoperative MR imaging. The magnet was acquired in collaboration with the Institute for Psychology, and this collaboration proved very fruitful. Studies of functional imaging of the brain were performed from the first day. The department of neurosurgery and the ENT department started using the MRI for intraoperative imaging during skull base surgery. The magnet was also used in numerous animal studies. Thus the number of procedures in the magnet was quadrupled by the introduction of the new MRI technology. And the investment that was made possible by collaboration between the hospital, the University of Oslo and the Norwegian Research council proved a great scientific success during 2008.

Imaging by the new Zeego angiographic equipment also started in January 2008. By using the system in the OR environment where several advanced procedures were performed, the system was thoroughly tested. After only a few months, Siemens concluded that major changes had to be made in the system to make an optimal clinical installation. Thus the system was removed, and a completely new system was installed in the autumn 2008. And the improved system was made available for commercial use.

The reach of the robotic arm of the Zeego system made it necessary to remove the OR lamps in the ceiling. The Interventional centre then developed a new system for OR light together with the company Artlight. The system was named “Lightor” and is still under development.

The high activity in the ORs following the change in equipment demonstrates the increasing importance for advanced imaging in the treatment of patients. In our third OR the number of advanced endoscopic procedures also continued to increase. Interventional bronchoscopy and advanced laparoscopy reached record levels in 2008. Laparoscopic liver surgery and pancreas surgery are now established methods at our hospital.

The increased activity in the ORs was matched by an increase in publications and scientific works. Several new ideas were also patented in 2008, and a number of small companies approached us for development of their ideas. The Interventional centre is a tool box for clinicians and scientists in our hospital as well as for others. We look forward to more scientific collaboration in the years to come.

Erik Fosse
Head of Department
The Interventional Centre

MAIN GOALS AND OBJECTIVES
The Interventional Centre is a research and development department for image guided and minimally invasive therapy at Rikshospitalet University Hospital (RH-HF) in Oslo.

The Interventional Centre has the following tasks:
1. Development of new procedures.
3. Compare new and existing strategies.
4. Study the social, economic, and organisational consequences of new procedures on health care.

STRATEGY
The Interventional Centre shall be a research and development resource for all the clinical and laboratory departments at Rikshospitalet University Hospital.

The Interventional Centre shall actively offer similar services to the healthcare community in Norway outside the hospital.

The Interventional Centre shall work as a link between technology institutions (commercial and academic) and the clinical medical environment in the hospitals.

The Interventional Centre shall promote and work actively to protect new knowledge and facilitate commercial exploitation.

The research is focused in four strategic areas:
1. MR guided intervention and surgery.
2. X-ray, CT, ultrasound, video-guided interventions and surgery.
4. Biosensors, data management and communication.

DELIVERIES
The Centre delivers the following:
1. New clinical methods.
2. Research.
3. Intellectual property/innovation.

ORGANISATION
The Interventional Centre is an independent hospital department. The Head of department reports directly to the hospital CEO. A National Advisory board with representatives from all universities and university hospitals in Norway and the main departments at Rikshospitalet monitors and gives advice on research and activity. In 2008 the Interventional Centre had a cross-disciplinary staff of 24 employees. Seven doctors, nurses, radiographers and engineers employed by other departments worked regularly at the Centre while a large number of medical staff from most departments in the hospital worked at a less regular basis at the Centre.

There were three university-employed professors (Erik Fosse, Tor Inge Tønnessen and Tor Edvardsen) at the Faculty of Medicine, University of Oslo, one professor at the Department of Informatics, University of Oslo (Eigil Samset) and one professor from the Department of Electronics and Telecommunication at the Norwegian University of Science and Technology (NTNU) in Trondheim (Ilangko Balasingham).

Professor Atle Bjørnerud from the Department of Physics, University of Oslo established his research group at the Centre in 2006. In addition 20 scientists were working at the Centre by external funding.
MATRIX ORGANISATION

In order to facilitate effective execution of cross-disciplinary projects, the personnel and equipment at the Centre were allocated to four sections in a matrix organisation (illustrated in the figure on page 4). Each section is headed by a section manager. Each project has a project manager and the project manager reports to the section manager in charge of the project. The head of department and the section managers constitute the management group where new projects are approved. Both the equipment and the staff are available as a common resource for departments and research groups aiming at developing and quality assess new methods. Scientists/clinical departments outside the Centre were responsible for a substantial number of the projects run in 2008. 40% of the staff had a technological, non-medical background.

By the end of 2008 the employees of the Interventional Centre came from 13 different nations all over the world. The Interventional Centre thus represented a unique multi-national environment of medical and technological expertise.

FACILITIES

The Centre has a unique architectural structure. In the three suites advanced imaging equipment was integrated in an operation room environment. In 2008 all advanced imaging equipment was renewed. In the combined surgical and radiological suite, the conventional angiographic equipment was substituted by the Siemens Zeego system, based on robotic technology and containing new advances in imaging and functionality. Our MRI suite was completely rebuilt into a dual room suite where a 3T was installed in one room beside a state of the art OR. The two rooms were separated by a sliding door, allowing surgery with standard equipment and intermittent MRI imaging.

In the videoscopy room all systems were replaced by Olympus HD equipment.
Research Groups

ENDOBRONCHIAL PROCEDURES
Arve Sundset, MD

This is a national program for interventional bronchoscopy and treatment of airway lesions. The program includes patients with lung cancer obstruction, with benign airway stenosis, and patients with airway complications following lung transplantation. This program also includes EBUS-TBNA (endobronchial ultrasound-guided transbronchial needle aspiration), a novel method of mediastinal staging in lung cancer, and diagnostic fine needle aspiration of mediastinal disease.

Two PhD studies related to the program are in progress:
1. PhD. research fellow: Kirill Neyman is studying survival and quality of life following interventional bronchoscopy in patients with inoperable lung cancer.
2. PhD. research fellow: Arve Sundset is studying airway perfusion in lung transplant recipients, and treatment of ischemic airway complications following lung transplantation.

ADVANCED MR NEURO IMAGING
Professor Atle Bjørnerud, PhD

The main focus of the Advanced MR Neuro Imaging (AMRNI) group is in the development of novel MR-based imaging techniques and software tools for improved diagnosis of brain tumours and neurodegenerative disease.

The AMRI group currently employs 2 PhD students (one in collaboration with the MI lab in Trondheim), 1 software engineer (by mid 2009) and 2 PostDocs (by mid 2009) in addition to the group leader.

In brain tumour diagnosis, the group has initiated major projects supported by the the Norwegian Research Council and Helse Sør-Øst. The latest project, named Evaluation of functional Magnetic Resonance in the Diagnosis of Brain Tumors for Assessment of Clinical Efficacy (EMBRACE) will aim at providing better initial diagnosis and follow-up (for optimal therapy planning) in patients with intracranial tumours. This is a multi-disciplinary project run by the AMRNI group, but involving both physicists, software engineers, neurosurgeons, neuroradiologists and pathologists as well as collaboration with groups in Germany and the US.

The group has to date received about 15 MNOK in research grants for brain tumor related projects. The project members submitted 2 patent applications and produced 5 peer-reviewed articles and one book chapter in 2008 in addition to a substantial number of conference presentations and invited lectures.

AMRI group also provides clinically relevant Masters Degree projects for students majoring in biophysics and informatics and currently supervise 3 MSc projects related to advanced neuroimaging methods (diffusion tensor imaging, quantitative MRI and dynamic contrast enhanced MRI).

The AMRNI group is also heading up the imaging part of a MR/PET project called Go/MCI which is part of the MedCoast program. The main objective of the Go/MCI
The AMRNI group is further involved in many MR-projects where our main focus is on MR sequence optimization and data handling. The group has also developed a large image processing software system (called nordicICE) in collaboration with a Bergen-based company (NordicImagingLab). The software system has been fully integrated into the hospital PACS system and has become an important clinical tool for advanced analysis of MR images.

Several new techniques in laparoscopic surgery have been introduced in Norway through this group. Some of the methods are now routine procedures, like laparoscopic adrenalectomy and laparoscopic prostatectomy. The group validates new procedures and establishes effective training. One multi-centre study on the quality of laparoscopic colonsurgery is finished in 2008. A randomized study between laparoscopic and open liver surgery is designed and should start in 2009.

Education programs in minimal invasive surgery in both gastrointestinal- and urological surgery are organized in collaboration with other hospitals in Norway, Sweden, Russia and Denmark.

The Department of Surgery is one of our main collaborators with research projects ongoing in:

- Minimal invasive surgery on the liver, pancreas, stomach, esophagus, kidney, adrenal gland and colon/rectum.
- Minimal invasive techniques in children.
- Thermal liver ablation.

So far three medical dissertations have been completed and two programs were ongoing in 2008.

Ongoing PhD programs in 2008:

Most minimally invasive procedures restrict the access and direct vision to the regions which require surgery. Such procedures require intra-operative image modalities such as ultrasound or endoscopic images to be able to monitor the surgery. In many cases this information is not sufficient to perform the procedure accurately and safely. Merging information acquired pre-operatively, mainly from for instance MRI, CT or PET, with intra-operative data can increase the basis for decisions and thereby improve the safety and accuracy of the procedure.

The image processing, visualization and navigation group develops cutting edge technological solutions which support minimally invasive procedures. As the title of the group indicates, the research focus is divided into three areas. Image processing methods are key elements in any software system which supports minimally invasive procedures. In particular, we are focused on developing real-time image-segmentation and - registration methods where segmentation methods finds important anatomical structures such as tumours and vessel structures in images, while registration methods enables fusion of images.
Visualization and navigation is required to present the medical images to the surgeon intra-operatively. We are developing visualization systems which use advanced techniques such as augmented reality and volume rendering for this purpose.

The group had 5 ongoing PhD programs in 2008:

1. Tangui Morvan (ARIS*ER- Early stage researcher): *Development of general purpose algorithms for collision detection using GPU (Graphics Processing Unit).*
 Mentors: Eigil Samset, The Interventional Centre and Martin Reimers, Department of Informatics, University of Oslo.

2. Sergiy Milko (ARIS*ER Early stage researchers): *Automatic registration of Ultrasound and CT/MRI images.*
 Mentors: Prof. Eigil Samset, The Interventional Centre and Timor Kadir, Siemens Magnet Technologies.

 Mentor: Prof. Eigil Samset, The Interventional Centre.

 Mentors: Prof. Knut Mørken, CMA/UiO and Prof. Eigil Samset, The Interventional Centre.

 Mentors: Prof. XueCheng Tai, CIPR/UiB and Prof. Eigil Samset, The Interventional Centre.

ARIS*ER AUGMENTED REALITY IN SURGERY
Professor Eigil Samset, PhD

ARIS*ER is a Marie Curie Research Training Network funded by the EU and aims at developing an augmented reality system supporting minimally invasive procedures. Advanced methods for image processing and visualization for improved RF-ablation was also developed and tested during several user studies.

Other important research results which originate from ARIS*ER are:

- Methods for fast and reliable image segmentation of liver structures.
- Visualization tools which enables information filtering.
- Novel navigation tools which improve targeting during needle insertion.
- New methods for performing requirements engineering.
- Methods for registration of MR and US.

A demonstrator that incorporates the different general technology features are developed to communicate with the clinicians. The ARIS*ER research group has in total 8 PhD-programs and 5 Post-docs employed by the 8 different European academic and industrial partners.

MATMED
Professor Eigil Samset, PhD

The project "Mathematical and computational methods for co-registering multi-modal medical images" (MATMED) is funded under the eScience program at the Norwegian Research Council for the period 2007-2011. It is a joint project between the Interventional Centre, Centre for Mathematics and Applications (CMA) at UiO and Center for Integrated Petroleum Research at the University of Bergen and funds three PhD positions.

In 2008 MATMED produced a video-presentation, aimed at increasing the awareness of mathematics to highschool and undergraduate students. The video is available from www.matmed.no.
The heart group is in the process of developing multiple new programs, in the area of treatment and follow-up of cardiac patients. After keeping a strong research focus on beating heart coronary surgery, the Interventional Center is increasingly focusing on projects related to the new exiting area of endovascular cardiovascular therapies and minimally invasive monitoring of cardiac function.

Aortic valve implantation through the endovascular route
A pilot study will be started in the near future to establish both the transfemoral and transapical route for implantation of aortic valves. A large randomized study, focusing on short and long-term outcomes as well as cost benefit and life quality studies. The project is a cooperative project between cardiology and cardiac surgery departments within Oslo University Hospital and several other groups which will focus on the cost issues and studies related to quality of life.

Pulmonary valve implantation in patients with congenital heart disease
A highly successful project of pulmonary valve implantation in patients with poor function of the pulmonic valve has been initiated in cooperation with specialists from Rikshospitalet departments for cardiac surgery and cardiology. Long term life quality studies and cost are being performed. This program follows a successful development of various procedures at IVS for congenital heart disease; several of these have been successfully transferred to the interventional cardiology service.

Heart sensor projects have been a focus area for IVS for a number of years. At present several experimental and clinical projects are ongoing. A three dimensional accelerometer, patented by IVS is being tested out for possible commercial use after the feasibility of detecting abnormalities in heart motion due to ischemia has been demonstrated. Several PhD degrees are related to these devices. Similar research is ongoing using implantable ultrasound probes, the early results are encouraging. The CO2 sensor developed at the IVS has also been tested experimentally as a monitor of ischemia of the heart as well as in other organs.

The Ultrasponder project is funded by EU and is an exiting study where IVS cooperates with multiple investigators within EU countries. The project which originates from the IVS engineering group will develop wireless sensors for use in patients with heart failure with the purpose of improving management of this very challenging group of patients which rapidly increase in size.

International cooperation in clinical medicine
IVS and affiliated groups continue to have government funded programs to assist in the development of the health care systems in countries in transition and other less fortunate countries. There are ongoing programs in Bosnia and Herzegovina and Palestine.

Ongoing PhD programs in 2008:
Mentor: Erik Fosse, the Interventional Centre/RR-HF.

Medical Sensors
Professor Erik Fosse, MD, PhD
The Interventional Centre is co-ordinating a joint project called “Micro-Heart” for detection of motion changes of the heart surface. The goal is to develop a system for early detection of ischemia through continuous peri- and post-operative monitoring using a 3-axis accelerometer for patients undergoing coronary revascularization (*Patent number: NO 20016385*). The “Micro-Heart” project is a close collaboration with Vestfold University College in Tønsberg. The Interventional Centre is responsible for the clinical research activity, and both an animal study and a human study are ongoing to verify the sensitivity and specificity of the detection method. Vestfold University is responsible for miniaturizing a three-axis accelerometer for incorporation into a temporary pacemaker electrode. The project is partly financed by the Research Council of Norway (*NRC*) with 4 PhD scholarships at Vestfold University College.

Together with the Department of Clinical Engineering, professor Sverre Grimnes this group was also involved in the development of a sensor for measuring the sweat production in different parts of the body by a bio-impedance technique.
artery, and that an increase in IL-8, IP-10 and C5a detects a rejection of the liver 2-4 days earlier than methods currently used.

1. Cand. Med. Lars Wælgaard:
New clinical methods for detection of ischemia
Mentor: Tor Inge Tønnessen, the Interventional Centre/Dept of Anaesthesiology, RR-HF.

2. Cand. Med. Søren Pischke:
Biosensors for detecting cardiac ischemia.
Mentor: Tor Inge Tønnessen, the Interventional Centre, Dept of Anaesthesiology, and Tom Eirik Mollnes, IMMI.

3. Cand. Med. Håkon Haugaa:
Microdialysis monitoring in transplanted patients.
Mentor: Tor Inge Tønnessen, the Interventional Centre, Dept of Anaesthesiology, and Tom Eirik Mollnes, IMMI.

BIOSENSORS

Professor Tor Inge Tønnessen, MD, PhD

The Biosensor research group has three main branches of interest, namely the biologic basis for ischemia and the choice of parameters for detection thereof, the second is the development of a specific pCO2 sensor and the third is developing methods for early detection of rejection in transplant patients. The biologic basis has been studied through animal experiments. Concerning the development of the sensor IscAlert™, we have collaboration with Alertis Medical AS and Memscap AS. The IscAlert sensor has received CE mark and FDA approval. In 2008 we have focused on developing the sensor for cardiac applications peri- and postoperatively. Experimental ischemia induced by occlusion of LAD is detected within minutes and IscAlert has 100% sensitivity and 100% specificity after 4 min of ischemia. In an ongoing clinical study we put microdialysis catheters in patients undergoing liver transplantation, two catheters in the liver and one catheter subcutaneously has been finished. Every hour metabolic parameters of ischemia were measured and every four hours we collected analyses for measuring cytokines and complement factors for detection of rejection. We found that the method has the ability to detect ischemia caused by thrombosis of the hepatic artery, and that an increase in IL-8, IP-10 and C5a detects a rejection of the liver 2-4 days earlier than methods currently used.

1. Cand. Med. Lars Wælgaard:
New clinical methods for detection of ischemia
Mentor: Tor Inge Tønnessen, the Interventional Centre/Dept of Anaesthesiology, RR-HF.

2. Cand. Med. Søren Pischke:
Biosensors for detecting cardiac ischemia.
Mentor: Tor Inge Tønnessen, the Interventional Centre, Dept of Anaesthesiology, and Tom Eirik Mollnes, IMMI.

3. Cand. Med. Håkon Haugaa:
Microdialysis monitoring in transplanted patients.
Mentor: Tor Inge Tønnessen, the Interventional Centre, Dept of Anaesthesiology, and Tom Eirik Mollnes, IMMI.

PATIENT COMMUNICATION

Professor Erik Fosse, MD, PhD

As part of a program to make the journal available to the patients, a program for automatic translation of medical terms into common Norwegian is being developed. One master thesis has so far been completed in this project.

ORGANISATION

Professor Erik Fosse, MD, PhD

The Interventional Centre co-operated with the Institute for Informatics and The Institute for Health Management and Health Economics at the University of Oslo, as well with the Norwegian School of Management (BI) in a research project focusing on the relationship between innovation, learning, technology and organizational change processes.

One PhD project was running as part of this program in 2008.

1. Cand. Polit. Bjørn Erik Mørk:
Organising for learning and innovation in Norwegian hospitals – How new technologies challenge existing organizational structures and cultures.
Mentors: Erik Fosse, the Interventional Centre, RR-HF, Johan Olaisen, Norwegian School of Management Oslo, Terje Hagen, Institute for Health Management and Health Economy, University of Oslo.
A number of research projects using the 3 T MR scanner or the combined angiographic suite are performed in corporation with different academic partners, including Stavanger University Hospital, The Paediatric Research Institute, Departments of Neuropsychiatry and Psychosomatic Medicine, Oncology, Ear Nose and Throat, Neurosurgery, Neurology, Anaesthesiology and Radiology. The research topics cover brain, spine, liver, prostate, brachial plexus and inner ear. Programs for using the Flat-detector Computed Tomography technology of the angiographic system, for guidance of the insertion Cochlear Implant Electrode and for brain perfusion studies are under preparation.

Main projects:

- Preoperative MR of patients with prostate cancer.
- MR assessment of Intracranial Pulsatility and Cardiac-beat Intracranial Volume change.
- Intra-annular Radiofrequency Thermal Disc Therapy.
- Vasculo-interstitial Thermotherapy.

A total of 4 PhD programs used the angiographic suite or the MR scanner for their research in 2008:

 Mentors: Berit H. Munkeby and Ola D. Saugstad, Pediatric Research Institute.

2. Cand. Med. Trygve Kjelstrup: *Axillary plexus block, nervestimulator, ultrasound and MRI.*
 Mentors: Øivind Klaastad and Harald Breivik, Department of Anaesthesiology/the Interventional Centre, Albert Castellheim, Department of Anaesthesiology, Diakonhjemmet Hospital.

 Mentors: Sverre Grimnes and Ørjan G. Martinsen, Institute of Physics, University of Oslo.

 Mentors: Ulrik Frederik Malt and Stein Andersson, Department of Neuropsychiatry and Psychosomatic Medicine, Espen Dietrichs, Department of Neurology, Ole Andreassen, Institute of Psychiatry, University of Oslo.

RADIOLgy RESEARCH AND IMAGE GUIDED INTERVENTION

Section manager Per Kristian Hol, MD, PhD

PAEDIATRIC CARDIAC INTERVENTION

Section manager Erik Thaulow, MD, PhD

Rikshospitalet has been a prime mover in the Norwegian initiatives to decrease the invasiveness of repair of cardiac defects in children. It is well known that cardiac surgery in the young can contribute to psychological and developmental difficulties which are concern for families of such children. The uses of non-operative methods are desirable to replace surgery, especially those procedures that require heart lung machine and circulatory arrest. Using the combined operating suites and the multi-specialty approach of the Interventional Centre, repair of atrial septal defects has now become a non operative procedure for most Norwegian children. Similarly, some patients with VSD can also be treated in a similar fashion. The IVS is now embarking, as one of the first centers in the world on the non operative replacement of the pulmonic valve in a certain group of children. A comprehensive program of evaluation of short and long term outcomes in these patients as well as cost considerations for individuals and society are under planning. One PhD program is focusing on the patient experiences. The cooperation between the IVS and the Pediatric Clinic is the basis for further progress in interventional therapy. This relates both to practical arrangements, technical skills in the IVS staff and also broader support in developing these strategies.
The intervention in the Centre was the topic of the Center since 1998. The Zeus Micro Joint telemanipulator has been used for animal studies performing coronary bypass surgery and human trials for thoracoscopic IMA takedown and sympathectomy.

The robotic group has developed a new head tracking control modality for steering the scope with a robotic scope holder using gyroscope sensors to track the head motion. This resulted in a PhD defended in 2004. In 2005 the research group was strengthened by a PhD fellow, Edvard Nærum, with the research topic of haptic and tactile feedback in remote surgery. Edvard Nærum has in 2008 been at a research stay at Seattle University, USA hosted by Professor Blake Hannaford. Two papers came out of this stay, and an important academic contact was established. Edvard Nærum is now working with his last study, and is planning to complete his PhD within 2009.

A post.doc in robotics, Jordi Cornell was employed in June 2006 to develop robotic control strategies with the use of a force sensor. The study is part of the ARIS*ER project (EU’s 6th framework) and will provide the robotic system with both haptic feedback capabilities and autonomous function by sensing the force between the environment and the robot. Jordi Cornell has finished his Post.doc in June 2008. In 2007 a master project on haptic guidance was started. The purpose of the project is to help the surgeon follow an insertion path, e.g. needle insertion, and to provide no-go zones near critical structures based on segmented image data. The work with semi-autonomous robotic systems combining tele-manipulation with haptic feedback and automatic robotic tasks will be pursued, and the research group is involved in several applications within EU’s 7th framework related to these topics.

The development of collision detection systems and visualization systems to help and guide the surgeon performing telemanipulated surgery was lead by the ARIS*ER PhD-student, Tangui Morvan. He made a demonstrator of this system in 2007, which was evaluated through a user study and published in 2008.
In 2006 a cross-disciplinary research collaboration between engineers and surgeons at the Interventional Centre and Department for Neurosurgery at Rikshospitalet University Hospital together with Neurosurgical Department and Department of Neuro Radiology at Ullevål University Hospital and Armstrong Healthcare Ltd., England. The dedicated person at Neurosurgical Department is Jon Ramm-Pettersen, MD (neuro surgeon), at the Interventional Centre, Ole Jakob Elle, PhD (engineer in robotics) and at Armstrong Healthcare Ltd., Patrick Finlay. Hege Fredø at Ullevål University Hospital is dedicated to the project as a PhD student. The project is aimed at precise positioning of a tool within target points in the brain using image guidance and without the use of a stereo-tactic frame, by use of the neurosurgical PathFinder robot. This project is on hold due to software upgrade of the PathFinder robot as a result of our preliminary use of the system.

The Robotic research group had one Post.doc. in 2008:
1. Dr. Jordi Cornella (ARIS*ER – Experienced Researcher): Integrating haptics with robotic systems and tele-manipulators.
 Mentor: Ole Jakob Elle and Eigil Samset, the Interventional Centre, Rikshospitalet University Hospital.

The Robotic research group had two PhD projects running in 2008:
 Mentors: Ole Jakob Elle and Erik Fosse, the Interventional Centre, Rikshospitalet University Hospital.
 Mentors: Iver A. Langmoen, Department of Neuro Radiology at Ullevål University Hospital and Ole Jakob Elle, the Interventional Centre, Rikshospitalet University Hospital.

The research group had one Master student in 2008:
 Mentors: Øyvind Stavdal, NTNU, Ole Jakob Elle, and Jordi Cornella, the Interventional Centre, Rikshospitalet University Hospital.

The sensors, signals, and systems research group aims to facilitate deployment intelligent sensors and systems for different procedures in surgery, minimal invasive therapy and ambient point of care monitoring. The main focus area of research is in efficient design and development of novel sensors, power efficient real time signal processing algorithms, sensor data fusion, and wireless communication solutions for in vivo and ex vivo purposes. Some of our activities are on designing novel optical sensors to measure pH and medical radar based on ultra wide band impulse electromagnetic signals to measure blood pressure, blood flow and tissue/organ motions. Furthermore, novel signal processing algorithms to facilitate power efficient processing of digital data in sensors, which are popularly called as sensor nodes in wireless communications networks. The digital sensor data fusion and multi parameter analysis are also active areas of research. We are working to design reliable, power efficient and robust wireless body area sensor networks for in vivo (implantable) and ex vivo use.

We have a close collaboration with the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU) in Trondheim and several national and international research institutions and companies participate in different projects. Collaboration with the Nordic academic and industry has been through the Nordic project on Biomedical Wireless Sensor Network (BWSN).

A live demonstration of all sensors in a wireless system on an animal model was performed as a part of a final symposium of the project in February 2008. The BWSN project was awarded a second phase of funding for another 18 months from June 2008. The ULTRAsponder project (EU FP7) had its kickoff meeting in at EPFL in Switzerland in September 2008. The participants in this project from Norway are clinicians and engineers from Interventional Centre and the Department of Cardiology. Furthermore, the research group established collaboration with the Norwegian Defense Research Establishment (FFI) and the Nanoelectronics group at the Department of Informatics, University of Oslo. The consortium including NTNU submitted a STORIKT-project proposal on Medical Sensing, Localization, and Communication using Ultra Wideband Technology (MELODY) to the
VERDIKT program at the Research Council of Norway, which was selected for funding for 7 years (4+3) in March 2008, where the project had its kickoff meeting in September 2008. The kickoff meeting was attended by Mr. Arvid Hallén, CEO and several Head of Departments of Research Council of Norway, Mr. Morten Reymert, CEO of Rikshospitalet, Deans and Head of Departments from NTNU and University of Oslo, and Research Director of FFI. There were also representatives from industry.

There is also an effort to establish a test bed for designing, developing and testing new technologies in sensors and wireless systems at the Interventional Centre in collaboration with SINTEF and industry. A pilot study on establishing a test bed is underway.

A resource network group on Wireless Healthcare (Trådløs pasient) has been established funded, in part, by the VERDIKT program at the Research Council of Norway, Oslo Bio and MedCoast Scandinavia. The aim of the group is to define roadmap and R&D strategy to facilitate use of wireless and sensor technologies to provide personalized health and care in a ubiquitous manner. It also aims to bring together academia and industry, and also inform different ministries about similar initiatives in the Nordic and European arenas. The funding of this network has been extended for another two years from June 2008.

The research group, which is split between Oslo and Trondheim, has presently seven PhD fellows and four Post doctoral fellows employed through the projects. In addition to Vegard Nossum, Thomas H. Naustdal has joined the group as a Programmer and works part time. Dr. Sang-Seon Byun joined as a Postdoc fellow in the SAMPOS project for one year and is located at NTNU in Trondheim. Dr. Ali Khaleghi joined as a Postdoc fellow from January 2008 in the WISENET project for two years and is located at the Interventional Centre in Oslo. Dr. Djamel Djenouri joined as an ERCIM Postdoc fellow from October 2008 for one year and is located at NTNU in Trondheim. PhD student David Turgis from Katholieke Universiteit Leuven in Belgium went back to Belgium after spending 10 months at NTNU in Trondheim. Dr. Pål Anders Floor joined as a Postdoc fellow from December 2008 for two years and works in both MELODY and ULTRAsponder projects. Mr. Lars Erik Solberg has formally joined as a PhD student in the MELODY project and works in the area of UWB radars. Ms. Fatemeh Kazemeyni joined as PhD student in November 2008 and works in the CONNECT project. Two researchers from SINTEF in Trondheim and Norwegian Computing Centre in Oslo are working, in part, in the SAMPOS and WISENET projects.

In 2008 this group had 7 PhD programs:

1. MSc. Xuedong Liang: Modelling tools for cross layer optimization in sensor networks. Mentors: Ilangko Balasingham, the Interventional Centre, RHF, Olaf Owe and Einar Broch Johansen, University of Oslo.

2. MSc. Stig Støa: Ultra wide band impulse radio. Mentor: Ilangko Balasingham, the Interventional Centre, RHF.

3. MSc Hessam Moussavinik: Super robust short range wireless sensor network. Mentors: Ilangko Balasingham, the Interventional Centre, RHF, Geir Øien and Tor Ramstad, Norwegian University of Science & Technology, and Niels Aakvaag, Multihop Com AS.
4. MSc Pham Minh Long:
* Distributed signal processing for power efficiency.
Mentors: Tor Ramstad, Norwegian University of Science & Technology and Ilangko Balasingham, the Interventional Centre, RHF.

5. MSc. Mariam Kaynia:
* Adaptive spectrum allocation in wireless sensor network.
Mentors: Geir Øien and Tor Ramstad.
Norwegian University of Science & Technology and Ilangko Balasingham, the Interventional Centre, RHF.

6. MSc. Fatemeh Kazemeyni:
* Modelling tools and optimization of wireless sensor network.
Mentors: Ilangko Balasingham, the Interventional Centre, RHF, Olaf Owe and Einar Broch Johansen, University of Oslo.

7. MSc. Lars Erik Solberg:
* UWB radars for medical applications.
Mentors: Ilangko Balasingham and Erik Fosse, the Interventional Centre, RHF, and Svein-Erik Hamran, Defence Research Establishment.

In 2008 the group had four Postdocs:

1. Dr. Djamel Djenouri:
* Multi-objective QoS optimization in wireless sensor networks.
Mentor: Ilangko Balasingham, the Interventional Centre, RHF and Norwegian University of Science & Technology.

2. Dr. Sang-Seon Byun:
* Development of Cognitive wireless sensor networks.
Mentor: Ilangko Balasingham, the Interventional Centre, RHF and Norwegian University of Science & Technology.

3. Dr. Pål Anders Floor:
* Signal processing for robust wireless communications.
Mentor: Ilangko Balasingham, the Interventional Centre, RHF and Tor Ramstad, Norwegian University of Science & Technology.

4. Dr. Ali Khaleghi:
* In vivo and ex vivo UWB applications.
Mentor: Ilangko Balasingham, the Interventional Centre, RHF and Norwegian University of Science & Technology.

NEURO COGNITIVE IMAGING

Associate Professor Tor Endestad

In cooperation with the Center for Study of Human Cognition at UiO a group has been established to work with basic research related to cognitive functions. A facility for presentation of visual and auditory information has been set up for the 3T MR environment allowing for functional MRI studies. The group is engaged in the study of memory and cognitive control. In one of the programs studies of early visual memory are combined with attention to better understand the building block of the human memory system. In addition memory errors (false memories) and the relationship between executive functions and impulse control are studied. Both patients with focal brain injuries and psychological disturbances are included in the research. Several projects with cooperation between the Center and RH (FRONT, SOBER3, HIPPO) were started in 2008 addressing frontal lobe damage, hormone influence on cognitive functions and localization of memory functions in preoperative planning. In addition to basic research, the group participate in the development of functional MRI as part of pre-surgical planning and improvement of neuropsychological diagnostics.

PhD Projects:

1. *Plasticity in the human visual system.*
PhD student: Markus Handal Sneve.
Principal res: Tor Endestad, Svein Magnussen.

2. *DTI: effects of varying number of diffusion sensitizing directions, b-value and NEX on diffusion metrics and tractography.*
Phd Student: Lars Tjelta Wesby.
Principal res: Anders Fjell, Kristine Walhovd, Atle Bjørnerud.

3. *FRONT Frontal Lobe Injury and cognition.*
PhD Students: Marianne Løvås, Ingrid Funderud.
Prinsipal res: Tor Endestad, Anne Kristin Solbakk, Magnus Lindgren.

4. *Å se farger som ikke finnes, en kombinert ERP og fMRI studie.*
PhD Student: Lars Tjelta Westlye.
Prinsipal res: Tor Endestad, Anders Fjell, Bruno Laeng, Kristine Walhovd.
The development of minimally invasive vascular surgery has been executed by a multi-disciplinary group in the combined angio/surgery suite at the Centre. The program has been focused on endovascular treatment of thoracic and abdominal aneurysms using endovascular stenting. The team led by Kirsten Krohg-Sørensen, has performed repair of thoracic and aortic stent grafts in a highly successful manner. The results have been documented in highly quoted international publications. One PhD program related to this project is planned. Contacts are being established to expand this program to more complex aortic pathology, including aortic arch pathology.

For a number of years the Department of Neurosurgery has used the GE open magnet for MR-guided neurosurgery. There have been substantial developments in technological solutions, and many clinical studies in brain tumour resections, pituitary tumour surgery and brain biopsies have been performed. The open GE-magnet was replaced by a closed bore 3T MR in 2007, and we started to perform transphenoidal pure endoscopic pituitary surgery in this 3T OR room. The activity will be extended to include brain tumour surgery when all the hardware is installed.

In 2006 we started to perform vascular neurosurgical procedures guided by angiography in our combined angiography-operation suite. The angio-suite was refurbished and fitted with state-of-the-art intraoperative angiography equipment from Siemens in 2007 and again in 2008, allowing rotational angiography with 3D representation intraoperatively. This will facilitate our work on vascular neurosurgery guided by angiography.

Main projects in cooperation with the advanced imaging group are:

- A study on whether 3T MRI characteristics can predict pituitary tumour consistency and hence suitability for transsphenoidal resection of macroadenomas.
- Establishing intraoperative tractography/DTI in the 3T MR.
Scientific Statistics
THE INTERVENTIONAL CENTRE 2008

PEER REVIEWED PAPERS

HUMAN PROCEDURES

TEST ANIMALS
Budget and Expenditures

INTERNAL HOSPITAL FUNDS ADMINISTERED BY THE INTERVENTIONAL CENTRE IN 2008

<table>
<thead>
<tr>
<th></th>
<th>BUDGET</th>
<th>EXPENDITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payroll expenses</td>
<td>13,394,000</td>
<td></td>
</tr>
<tr>
<td>Other operating expenses</td>
<td>6,274,000</td>
<td></td>
</tr>
<tr>
<td>Sum internal finance</td>
<td>19,668,000</td>
<td>20,031,000</td>
</tr>
</tbody>
</table>

EXTERNAL FUNDS ADMINISTERED BY THE INTERVENTIONAL CENTRE IN 2008

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>INCOME</th>
<th>EXPENDITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Council of Norway</td>
<td>5,195,000</td>
<td></td>
</tr>
<tr>
<td>Regional Health Authority</td>
<td>457,000</td>
<td></td>
</tr>
<tr>
<td>European Commission</td>
<td>2,098,919</td>
<td></td>
</tr>
<tr>
<td>University of Oslo</td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td>National Heart and Lung Association</td>
<td>560,000</td>
<td></td>
</tr>
<tr>
<td>Ministry of Foreign Affairs</td>
<td>2,400,000</td>
<td></td>
</tr>
<tr>
<td>Research-, and pending expenditures</td>
<td></td>
<td>10,613,668</td>
</tr>
<tr>
<td>Balance</td>
<td>10,830,919</td>
<td>10,613,668</td>
</tr>
</tbody>
</table>

DRG POINTS GENERATED AT THE INTERVENTIONAL CENTRE (80% refund)

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRG</td>
<td>731,7</td>
<td>885,5</td>
<td>837,1</td>
<td>791,6</td>
<td>1014,3</td>
</tr>
<tr>
<td>NOK</td>
<td>19,979</td>
<td>20,378</td>
<td>21,168</td>
<td>20,265</td>
<td>27,303</td>
</tr>
</tbody>
</table>

DRG INCOME BY THE CLINICS IN 2008 (80% refund)

<table>
<thead>
<tr>
<th>CLINIC</th>
<th>DRG POINTS</th>
<th>VALUE NOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric</td>
<td>6,9</td>
<td>185,731</td>
</tr>
<tr>
<td>Heart and Lung Clinic</td>
<td>597,1</td>
<td>16,085,959</td>
</tr>
<tr>
<td>Surgical Clinic</td>
<td>336,0</td>
<td>9,044,314</td>
</tr>
<tr>
<td>Medical Clinic</td>
<td>7,4</td>
<td>199,190</td>
</tr>
<tr>
<td>Neurosurgery Clinic</td>
<td>59,7</td>
<td>1,606,981</td>
</tr>
<tr>
<td>ENT</td>
<td>7,0</td>
<td>188,423</td>
</tr>
<tr>
<td>Total</td>
<td>1014,1</td>
<td>27,310,598</td>
</tr>
</tbody>
</table>
Patent Applications

THE INTERVENTIONAL CENTRE 1998 – 2008

ACTIVE PATENTS (GRANTED)

<table>
<thead>
<tr>
<th>PATENT NR.</th>
<th>TITLE</th>
<th>INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1063923</td>
<td>Method and device for sutureless anastomosis</td>
<td>Sumit Roy, Erik Fosse</td>
</tr>
<tr>
<td>WO 0169130</td>
<td>Light system for use especially by operating theatre</td>
<td>Erik Fosse, Frode Lærum, Ole Jakob Elle</td>
</tr>
<tr>
<td>WO 0004386</td>
<td>Device for PCO2 detection</td>
<td>Tor Inge Tønnessen, Peyman Mirtaheri</td>
</tr>
<tr>
<td>WO 9211823</td>
<td>Filtering device for preventing embolism and/or distension of blood vessel walls</td>
<td>Frode Lærum</td>
</tr>
<tr>
<td>NO 20016385</td>
<td>System for monitoring changes in movements of an organ, preferably a heart muscle</td>
<td>Erik Fosse, Ole Jakob Elle, Martin Gulbrandsen</td>
</tr>
<tr>
<td>NO 20023605</td>
<td>Method and device for connecting two tubular organs</td>
<td>Erik Fosse, Ole Jakob Elle, Sumit Roy</td>
</tr>
</tbody>
</table>

PENDING PATENTS

<table>
<thead>
<tr>
<th>PATENT</th>
<th>TITLE</th>
<th>INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US PCT patent application: 2007</td>
<td>Method and apparatus for visualization of a flexible body</td>
<td>Eigil Samset</td>
</tr>
<tr>
<td>US Patent: 20030114876</td>
<td>Device for use by brain operations</td>
<td>Eigil Samset, Henry Hirschberg, Åge Kristiansen</td>
</tr>
<tr>
<td>IPCS 8 class: AA61 18603F1; USPC class: 600425</td>
<td>Tumor grading from blood volume maps</td>
<td>Kyrre Emblem, Atle Bjørnerud</td>
</tr>
<tr>
<td>EP1632201 Implant</td>
<td>Implant</td>
<td>Bjørn Edwin, Erik Fosse</td>
</tr>
<tr>
<td>WO2009027522A1</td>
<td>Automated monitoring of myocardial function by ultrasonic transducers positioned on the heart</td>
<td>Ole Jakob Elle, Erik Fosse, Halfdan Ihlen, Andreas Espinoza, Lars Hoff</td>
</tr>
<tr>
<td>WO2009004001A1</td>
<td>Method and kit for sweat activity measurement</td>
<td>Ørjan Grøttem Martinsen, Sverre Jørjan Grøttem, Erik Fosse</td>
</tr>
<tr>
<td>WO03061473A1</td>
<td>Use of sensor and system for monitoring heart movements</td>
<td>Ole Jacob Elle, Erik Fosse, Martin G. Gulbrandsen</td>
</tr>
<tr>
<td>US20080281214A1</td>
<td>Method for estimating cardiac pumping capacity</td>
<td>Ole Jakob Elle, Erik Fosse, Per Steinar Halvorsen</td>
</tr>
</tbody>
</table>
Academic Partners 2008

NATIONAL ACADEMIC PARTNERS

Norwegian Defense Research Establishment (FFI)
Prof. Torleiv Maseng
and Prof. Svein Erik Hamran
MELODY project.

St. Olav’s Hospital Trondheim, NTNU
Assoc prof. Asta Håberg
New statistical methods for improved characterization of gliomas.

University Hospital Stavanger
Kathinka Kurz
Characterization of breast tumors using MR mammography.

Institute of psychology, UiO
Assoc. prof. Tor Endestad,
Prof. Svein Magnussen
Cognitive function and fMRI.
Prof. Anders Fjell
MR morphometry and diffusion tensor imaging.

Institute of Psychiatry, UiO
Prof. Ole Andreassen
Neuroplasticity in patients with bipolar disorders.

Centre for Micro technology, Vestfold University College
Assoc. Prof. Hans Jørgen Alker
Cooperation on the project “Micro-heart”.
Based on a patent idea by the Interventional Centre an implantable micro sensor is being developed. The sensor will monitor changes in heart movement caused by ischemia. The project is financed by the Norwegian Research Council and includes several research fellows at the University College of Vestfold.

Centre of Mathematics for Applications, University of Oslo
Prof. Knut Marken
The Interventional Centre and the Centre of Mathematics for Applications in cooperation tutored a PhD degree which was defended by Martin Reymers. The PhD was part of research cooperation about fundamental mathematical methods for use in image-guided treatment. Together with the Simula Centre, the Interventional Centre and CMA are applying for the STORFORSK project “Mathematical methods supporting minimally invasive therapy in medicine”.

Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU), Trondheim
Bård Kjos, Prof. Richard Blake,
Prof. Hery Ramampiaro
Image processing, data graphics, medical journal indexing and search engines. MSc student supervision.

Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim
Prof. Ilango Balasingham,
Prof. Tor Ramstad, Prof. Andrew Perkis,
Prof. Geir Øien
Signal processing algorithms, wireless sensor network, multimedia patient record systems. Supervision of several MSc and PhD students.

Department of Energy- and Processing Technique, Norwegian University of Science and Technology (NTNU), Trondheim
Prof. em. Magne Lamvik
Thermodynamics, cryo ablation of the liver.

Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim
Prof. Olav Egeland and Prof. Bjørn Angelsen
Robotic technique and ultrasound.

Department of Informatics (IFI), Faculty of mathematics and national sciences, University of Oslo
Prof. Knut Marken, Prof. Olaf Owe
The Interventional Centre cooperated closely with IFI. The project consists mainly of supervision of master degree students, (in 2006: 1 student).
The head of the technology section at the Interventional Centre is employed as assistant professor at IFI.

Group for Precise modeling and Analysis.
The collaboration between the Precise Modeling and Analysis group and the Interventional Centre has resulted in an EU FP6 IST project and a project funded by the Norwegian Research Council on modeling tools for wireless biomedical sensor networks. Xuedong Liang was hired as a PhD fellow in the EU project for three years whereas another PhD fellow will be hired soon in the CONNECT project, which is funded by the Norwegian Research Council.

Department of Neuro Radiology,
Ullevål University Hospital
Prof Per Nakstad MD

Department of Neurosurgery,
Ullevål University Hospital
Prof. Iver Langmoen

Institute of Physics, Faculty of mathematics and natural sciences.
University of Oslo
Prof. Sverre Grimnes, prof. Ørjan Martinsen
Bioelectrical properties of human tissue
Development of a skin moisture sensor.
Two PhD programs.

Dept of Radiology,
The Norwegian Cancer Hospital
Prof. Arne Skretting
Development of a radioactive gel for treatment of bowel tumours.

The School of Pharmacy, Faculty of mathematics and natural sciences.
University of Oslo
Prof. Jan Karløen
Development of a radioactive gel for treatment of bowel tumours.

INTERNATIONAL ACADEMIC PARTNERS

Sahlgrenska University Hospital,
The ColoRectal Unit
Contact person: Prof. Leif Hultén MD PhD

Göteborgs Universitet,
Instition för kliniske vetenskaper
Contact person:
Prof. Peter Thomsen MD PhD

University of British Columbia,
Vancouver, Canada
Contact person: Prof. Victor Leung

Uppsala University, Sweden
Contact person: Prof. Anders Rydberg MELODY project.

Royal Institute of Technology, Sweden
Contact person: Prof. Mikael Skoglund MELODY project.

National Institute of ICT, Japan
Contact person: Prof. Huan-Bang Li MELODY project.

Linköping University, Sweden
Contact person: Prof. Erik G Larsson MELODY project.

SORIN Group, France
Contact person: Dr. Renzo Dal Molin MELODY project.

University of California
Santa Barbara, USA
Contact person: Prof. Ken Rose MELODY project.

EURECOM, France
Contact person: Prof. Raymond Knopp MELODY project.

Univeristy of California
San Diego
Contact person: Prof. Anders Dale
Novel methods for quantification of tumor growth.

University of Heidelberg
Contact person: Prof. Frank Zoellner
Novel statistical methods for predictive modeling of tumor grade.

Uppsala Universitetet
Contact person: Prof Håkan Ahlström
MR based Quantitative perfusion analysis.

I.M. Setchenov
Moscow Medical Academy
Moscow, Russia
The co-operation involved exchange of medical students in addition to an extensive collaboration in the development of laparoscopic surgery with guest instructors from Norway and several seminars in Moscow.

Department of Anaesthesiology,
Massachusetts Medical Center,
Boston, USA
Contact person: Prof. Babs Soller
Collaboration in the SAMPOS project on optical pH-sensor.

Department of Cardiovascular Surgery,
University Medical Center Ljubljana, Slovenia
(Academic partner – ARIS*ER)
Contact person: Borut Gersak
They are a clinical academic partner in the ARIS*ER project and responsible for the development of new methods in minimally invasive Mitral Valve Repair and Replacement.

Department of Radiology, Brigham and Women’s Hospital,
Harward University, Boston
Contact person: Prof. Ferenc Jolesz
BWH has been a leading hospital in introducing MR guided treatment as a research field and has made new methods for treatment of patients.
The cooperation consists of exchange of research personnel. An application named “Development of novel applications for high-field MRI-guided therapies” was granted by the Norwegian
The Interventional Centre
Annual report 2008

research council (NRC) in 2004 for three years financing of the project.

Graz University of Technology, Austria (Academic partner – ARIS*ER)
Contact person: Dieter Schmalstieg
Their responsibility within the project is new methods for Augmented Reality Visualization.

IFC-CNR, Institute of Clinical Physiology, Biomedical Engineering Science and Technology Division, Lecce, Italy
(Academic partner – ARIS*ER)
Contact person: Sergio Casciaro
Their responsibility is new methods for medical image segmentation.

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland & Department of Electrical Engineering, University of California, Berkeley, USA
Contact person: Prof. Martin Vetterli
Collaboration in the SAMPOS and WISENET projects on signal processing in sensor nodes.

School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
Contact person: Prof. Erik Larsson
Collaboration in the SAMPOS project on wireless sensor networks.

Technical University of Delft, The Netherlands
(Academic partner – ARIS*ER)
Contact person: Adinda Freudenthal
Their responsibility is to link clinical needs into useful system features by using user-centred design methods.

The Katholieke Universiteit Leuven, Belgium (Academic partner – ARIS*ER)
Contact person: Jos Vander Slaten
Their responsibility is haptic/tactile feedback related to telemanipulators and robotics to crosslink image information with robotic control.

University Hospital of Tuzla, Dept. Cardiac Surgery, Bosnia
Contact persons: Prof. Emir Kabil, Dr. Jacob Bergsland
Since 1998 The Interventional Centre (IVS) has been active in building medical expertise in Bosnia. The Cardiovascular Clinic in Tuzla which was started with assistance from USA soon developed a close relationship with the Centre and Department of Thoracic Surgery at Rikshospitalet. The cooperative program has continued in 2008. The program has supported by grants from the Royal Norwegian Foreign Department. In 2008 the activity focused on further education of medical personnel and the development of academic expertise. A simulator training program was initiated in cooperation with Sim Surgery an Interventional Center spin-off. Research initiatives have included preparation for two important research projects to be conducted as collaborative programs between Rikshospitalet and Tuzla: A cross-sectional study to look at the incidence of cardiovascular risk factors in a rural and urban population in Bosnia, and a randomized study evaluating the effect of platelet active drugs in coronary artery bypass patients. ICT initiatives have been continued to improve the access to clinical and research data for the hospitals in Bosnia. A new application for funds to improve neurosurgery, radiology and the treatment of acute myocardial infarction will be focused together with e-health and reform.
Cancer Cure as
Gunnar Myhr CEO
Collaboration for development of a system for targeted drug delivery under MR guidance.
Other partners: Institute for Cancer research.

Hospitality AS, Norway
Contact person:
Mr. Flemming Bo Hegerstrøm
MELODY project.

Lifecare AS, Norway
Contact person:
Dr. Erik Johannessen
MELODY project.

IBM Healthcare, Norway
Contact person:
Mr. Jan Fredrik Sagdahl and Frode Tveit
MELODY project.

NordicNeuroLab AS, Bergen
Development of comprehensive software package for advanced functional image analysis.

Sectra AB, Sweden
Integration of in-house developed software into hospital PACS.

CorTechs Labs, San Diego
Novel methods for quantification of tumor growth.

ABB Corporate Research, Oslo
Contact person:
Dagfin Brodtkorb
Collaboration in the SAMPOS and WISENET projects on robust wireless communications.

Acreo AB, Göteborg, Sweden
Contact person:
Dr. Michael Salter
Collaboration in the BWSN project.

ADIGO, Oppegård
Contact person:
Øyvind Overskeid
Collaboration on devices for laparoscopic surgery.

Alertis Medical AS
Contact person:
CEO Martin Krekling
Development of a pCO2 sensor.
Five PhD programs.

Ericsson AB, Göteborg, Sweden
Contact person:
Dr. Arne Alping and Dr. Thomas Lewin
Collaboration in the BWSN project.

GE Healthcare
Contact person:
Audun Thernes
Development of MR contrast media.
The project involves the Clinic for intervention and imaging, the Institute for cancer research, the department for comparative medicine and the Interventional Centre.

GE Vingmed-Sound
Contact person:
Gunnar Hansen
Development of ultra sound equipment for cardiology.

Healthy Pointers
Contact person:
Stian Aldrin
Pointing device for laparoscopic surgery.

Imego AB, Göteborg, Sweden
Contact person:
Dr. Peter Bjöökholm
Collaboration in the BWSN project.

Kongsberg SIM
(Industrial partner – ARIS*ER)
Contact person:
Øyvind Rideng
Systems in Motion provides the project with a 3D graphics library. Their responsibility in the project is parallelized 3D rendering.

Memscap AS, Horten
Contact person:
Andre Larsen
Collaboration in the BWSN and WIRE-MED projects on MEMS based pressure sensors.

MilliCore AB, Norrköping, Sweden
Contact person:
Mikael Löfgren
Collaboration in the BWSN project.

Multihopp Communications, Oslo
Contact person:
Niels Aakvaag
Collaboration in the WISENET project on robust wireless communications.

Norwegian Computing Center, Oslo
Contact person:
Dr. Wolfgang Leister
Collaboration in the SAMPOS project on security and authentication platform in wireless sensor systems.

Novelda AS, Oslo
Contact person:
Eirik Naess-Ulseth
Collaboration in the BWSN, WIREMED, and Medical Radar projects on ultra wide band impulse radio platform for medical communications and remote sensor.

Novosense AB, Lund, Sweden
Contact person:
Karl-Johan Ohman
Collaboration in the BWSN project.

OstomyCure
Contact person:
Martin Johansson
Development of medical implants.

Phillips Medical Systems
Contact person:
Jørn Kværnes
Development of systems for MR-guided interventions and surgery.

Prosurgics Ltd, High Wycombe, United Kingdom
Contact person:
Patrick Finley
The collaboration is concentrated around the neurosurgical robot PathFinder from Prosurgics Ltd.
The aim is to precisely position a tool within target points in the brain using image guidance and without the use of a stereotactic frame.

Siemens Medical Imaging, Erlangen, Germany
Contact person:
Lutz Bluhm
Integration of the Zeego angiographic system in the OR.
Siemens Magnet Technologies
(Industrial partner – ARIS*ER)
Contact person: Robert McLaughlin
They are responsible for image registration to ensure optimal correlation between the different medical image modalities like CT, MR and ultrasound.

SimSurgery AS
Contact person: M.D. Vidar Sørhus
SimSurgery AS is pioneering the development of advanced real-time 3D simulations for surgical procedures.

SimSurgery AS started due to clinical needs specified by the Interventional Centre. After a feasibility study SimSurgery was established (Sept. 1999) with researchers from the Interventional Centre and SINTEF. There is an ongoing collaboration in development and quality assessment of the simulators.

SINTEF ICT, Oslo
Contact person: Dag Ausen
Collaboration in the WIREMED project on MEMS technology for implantable pressure sensors.

SINTEF ICT, Trondheim
Contact person: Knut Grythe
Collaboration in the SAMPOS project on QoS metric in wireless sensor network.

VTT Information Technology, Helsinki, Finland
Contact person: Marku Jennu
Collaboration in the BWSN project.
Publications

PEER REVIEWED PUBLICATIONS IN INTERNATIONAL JOURNALS

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

192 Bergslund J, Fosse E, Svennevig JL. *Coronary artery bypass grafting with or without cardiopulmonary bypass.* Cardiac surgery today 2008;4:10-17.

205 Frich L. Local ablation of colorectal liver metastasis -a systematic review. Tidsskr Nor Lægeforen 128(1), 54-56.

PEER REVIEWED PAPERS IN NORWEGIAN JOURNALS

1997

1998

1999

2000

2001

2002

2003

2004

2008

14. Frich L. Local ablation of colorectal liver metastasis - a systematic review. Tidsskr Nor Lægeforen 2008; 128(1), 54-56.

BOOKS AND BOOK CHAPTERS

1998

1999

2000

2008

2001

2002

2003

2006

2007

2008

EDITORIALS, CHRONICLES AND COMMENTARIES

1999

2000

2002

2003

2004

2006

2007

2008

PHD THESES

2002

2003

2004

7. Reimers M.
Mathematical methods for 3D visualization of organ geometry in image guided surgery and simulation.
Oslo: Faculty of Mathematics and natural sciences, the Interventional Centre, Rikshospitalet.
University of Oslo, 2004. (ISSN 1501-7710).

2005
8. Bjørnstad P.
Catheter-based treatment for persistently patent arterial ducts and for atrial septal defects in the oval fossa.
Oslo: Dept Paediatrics, the Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2005. (ISBN 82-8072-149-5).

9. Mirtaheri P.
A novel biomedical sensor for early detection of organ ischemia.

10. Edwin B.
Advanced laparoscopy – from the research and development department to day care surgery.
Oslo: Dept. of Surgery, Ullevål university hospital, the Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2005. (ISBN: 82-8072-655-9).

2006
11. Lund C.
Neurological consequences of coronary surgery with or without cardiopulmonary bypass.
Oslo: Dept of Neurology and the Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. (ISBN: 82-8072-662-4).

12. Skulstad H.
New insights into the function of normal and ischemic myocardium.
Oslo: Dept of Cardiology, Institute Surgical research and the Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. (ISBN: 82-8072-847-3).

2007
13. Frich L.
Radiofrequency ablation of liver tumors. An experimental and clinical study.

14. Hol PK.
Integrating Coronary Angiography into the Cardiac Operating Room.

2008
15. Andersen MH.
Patient-reported outcomes following living donor nephrectomy.
The Interventional Centre and the Dept of Surgery, Rikshospitalet.

2004

2005

36. Opsjøen S.
Tracking of surfaces - matched with CT/MR.

37. Øyen Larsen S.
Segmentation of frozen region in MR images, exploiting phase information to improve thermometry.

38. Lyche Melvær E.
Real-time volume visualization supporting medical interventions.

39. Roe B.
Multi-modal image registration of spinal images.

2006

40. Birkedal G.
Navigated 3D X-ray.

41. Ivanova E.
Automatic adaption of information in Electronic Patient Records.

2007

42. Støa S.
Sensornettverk for medisinsk behandling.

43. Skogholt M.
ZigBee for Medical biosensor Network.

44. Blomander C.
Are leaders conductors or marionettes?
Oslo, Diakonhjemmet University College 2006.

45. Hansen M.
Deteksjon av myokard iskemi i biomedisinske signaler ved bruk av treakset akselerometer.

46. Ødegård K.
Deteksjon av myokard iskemi i biomedisinske signaler ved bruk av treakset akselerometer.

2008

47. Lande H.
UWB-IR for biomedisinske sensornettverk.

48. Vo LT.
An optimized cross-layer protocol for patient confined wireless network.

49. Asphjell ØK.
Biomedisinske sensornettverk basert på Ultra Wideband impulsradio og IEEE 802.15.4/Zigbee.

50. Wendt K.
Humanitarian aid and sustainable development.
Oslo, Diakonhjemmet University College.

51. Stallemo K.
Patient friendly presentation of electronic patient record.
NTNU, 2008.
Members of the Advisory Board
THE INTERVENTIONAL CENTRE 2008

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director, Professor</td>
<td>Karl-Erik Giercksky</td>
<td>Div. of Surgery</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Otto A. Smiseth</td>
<td>Div. of Cardiovasc. & Resp. Med. & Surgery</td>
</tr>
<tr>
<td>Director, PhD, MD</td>
<td>Trine Sand-Kaastad</td>
<td>Div. of ENT, Plastic and Orth. Surgery</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Sigbjørn Smeland</td>
<td>Div. of Cancer Med. and Radiotherapy</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Thomas Åbyholm</td>
<td>Div. of Obstetrics and Gynaecology</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Geir Ketil Røste</td>
<td>Div. of Clinical Neuroscience</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Øyvind Skraastad</td>
<td>Div. of Anaesthesiology and Int. Care Medicine</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Jarl Á. Jakobsen</td>
<td>Div. of Medical Imaging and Intervention</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Frode Vartdal</td>
<td>Faculty of Medicine, Univ. of Oslo</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Erlend Smeland</td>
<td>Institute for Cancer Research</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Kristian Bjoro</td>
<td>Medical Division</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Terje Rootwelt</td>
<td>Division of Paediatrics</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Ansgar O. Aasen</td>
<td>Institute for Surgical Research</td>
</tr>
<tr>
<td>Professor</td>
<td>Olav Haraldseth</td>
<td>Faculty of Medicine, NTNU Trondheim</td>
</tr>
<tr>
<td>Professor</td>
<td>Richard Blake</td>
<td>Faculty of Info., Mathem. and Electr., NTNU, Trondheim</td>
</tr>
<tr>
<td>Professor</td>
<td>Hans Olav Myhre</td>
<td>St. Olavs Hospital, Trondheim</td>
</tr>
<tr>
<td>Ass. Professor</td>
<td>Martin Biermann</td>
<td>University of Bergen</td>
</tr>
<tr>
<td>Professor</td>
<td>Torfinn Taxt</td>
<td>University of Bergen</td>
</tr>
<tr>
<td>Consultant Surgeon</td>
<td>Ulf Kongsgaard</td>
<td>Dept. of Anaest., Montebello</td>
</tr>
<tr>
<td>Professor</td>
<td>Petter Eldevik</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Kirsti Ytrehus</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Steinar Pedersen</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Arne Bakka</td>
<td>University Hospital of Akershus</td>
</tr>
<tr>
<td>Professor</td>
<td>Per Hj. Nakstad</td>
<td>Ullevål University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Nils-Einar Kløw</td>
<td>Ullevål University Hospital</td>
</tr>
<tr>
<td>Director</td>
<td>Berit Marland</td>
<td>The Norwegian Health Services Research Centre</td>
</tr>
<tr>
<td>Dr. Philos</td>
<td>Bjorn Anton Graff</td>
<td>The Norwegian Health Services Research Centre</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Barbra Noodt</td>
<td>Directorate for Health and Social Affairs</td>
</tr>
</tbody>
</table>