The Intervention Centre
Annual report 2012

Oslo University Hospital and
Faculty of Clinical Medicine, University of Oslo
ANNUAL REPORT 2012
The Intervention Centre

3 Safe introduction of new clinical procedures involving medical technology
4 Main goals and objectives
6 Section of Diagnostic Physics
Regional Services
8 Research groups
26 Scientific statistics
29 Budget and expenditures
30 Publications
Safe introduction of new clinical procedures involving medical technology

Medicine is rapidly evolving, and new procedures are constantly introduced. Some of these methods are simple and involve little new technology. Many of the new methods are, however, not so simple, and involve the use of advanced, expensive technology. Some of these methods, like radiology guided interventions and robotassisted surgery involve expensive advanced technology. In many cases the clinical benefit and cost effectiveness of the new methods have not been documented before the procedures are introduced in daily practice.

The Intervention Centre was established as a toolbox for the clinical departments in their efforts to develop new technology based procedures for diagnostics and treatment. For more than 15 years we have worked with clinicians from our own and other hospitals to develop new procedures for treatment in a safe environment.

Before introduction of a new method a health technology assessment is performed. But often the scientific evidence is lacking before we start a procedure, then the introduction of the method in our hospital needs to be documented.

As the Intervention Centre is approved both as an animal facility and operation theatre for patients, the centre can perform the whole chain of studies required for introducing new procedures. The surgeons may start with some animal cases before moving to pilot procedures in patients and eventually randomized, controlled trials.

The randomized trials often include three outcome categories. Clinical outcome, patient experienced outcome and health economy assessment.

In 2012 The Intervention Centre was appointed core facility for introduction of methods. In 2013 we will increase our efforts to support the clinicians in performing health technology assessments and develop procedures in a safe environment providing evidence for the efficacy of new methods.

Erik Fosse
Head of Department
Main goals and objectives

THE CENTRE HAS THE FOLLOWING TASKS:

1. Develop new procedures
2. Develop new treatment strategies
3. Compare new and existing strategies
4. Optimizing and development of advanced imaging techniques
5. Study the social, economic, and organisational consequences of new procedures on health care
6. Administration of radiation protection for all departments in the hospital

RESEARCH AREAS

- MR guided intervention and surgery
- X-ray, CT, ultrasound, video-guided interventions and surgery
- Robotics and simulators
- Sensor technology, data management and communication technology
- Physics in MR, CT, X-ray, US, PET and nuclear medicine

FACILITIES

The Centre is part of the general operation room area at Oslo University Hospital, Rikshospitalet. In addition to human procedures, The Intervention Centre has approval for animal trials in the operation theatres and hybrid suites. The staff is experienced in performing animal trials. In three suites advanced imaging equipment is integrated in an operation room environment.

In 2007, all advanced imaging equipment was renewed. In the combined surgical and radiological suite, the conventional angiographic equipment was substituted by a Siemens Zeego system, based on robotic technology and new advances in imaging and functionality. The Intervention Centre is a test site for their Zeego system. The MRI suite was completely rebuilt into a dual room suite where a Philips 3 Tesla MRI was installed in connection to a state-of-the-art Operation theater. The MRI was funded as a joint effort by the Norwegian Research Council, the University of Oslo and Rikshospitalet. In the videoscopy room all systems are equipped with Olympus HD equipment.

STAFF

The multi-disciplinary staff includes 45 persons (doctors, nurses, radiographers, medical physicists and technologists). Four professors and two associate professors, employed at the Faculty of Medicine and the Faculty of Mathematics and natural sciences of University of Oslo (UiO) and the Department of Electronics and Telecommunication of the Norwegian University of Technology (NTNU), are included among the staff.
The Intervention Centre is organized in The Clinic for diagnostics and intervention in OUS.

In order to facilitate effective management of multi-disciplinary projects, the personnel and equipment at the Centre are allocated to five sections. All projects in the Centre are allocated to one of these sections, and the project manager is reporting to one section manager. The operation rooms are managed by the unit nursing officer, reporting directly to the head of department. In 2005, OUS established a group of medical physicists specialized in diagnostic radiology, nuclear medicine and intervention. The establishment was supported by both the Southern and the Eastern Norway regional health authorities.

From 1st January 2010, the section for diagnostic physics was allocated to the Intervention Centre, providing most of the hospitals in the South-eastern health region of Norway with physics services for daily running of the radiology and nuclear medicine departments and for physics research infrastructure.
Section of Diagnostic Physics

Section manager Associate professor Anne Catrine Trægde Martinsen, PhD

In the Intervention Centre, there are 22 physicists employed on regular basis, of whom 10 are working in the fields of CT, X-ray, intervention and radiation protection, 4 are working in the field of nuclear medicine and PET-CT and 8 are working in the fields of MR-physics. This is the largest department of diagnostic physics in Norway, offering a regional service in the South Eastern Health region of Norway.

In addition to quality assurance and radiation protection, the section is co-responsible for the daily follow-up and management of the PET-CT core facility and the MR core facility in OUS, and are involved in research in topics as MR-physics, CT-physics, mammography, intervention radiology, nuclear medicine including PET-CT, image processing and radiation protection. In addition, comparison studies of different modalities, optimization of radiation protection in pediatrics, interventional radiology and internal dosimetry are also fields of research.

REGIONAL PHYSICIST SERVICE

In 2005, OUS established a group of physicists specialized in diagnostic radiology, nuclear medicine and intervention, serving most of the hospitals in the southeastern part of Norway. In 2012, the Intervention Centre offered service to all the hospitals in OUS and to 13 hospitals and radiological institutes at 35 locations outside OUS:

AHUS
Sykehuset Innlandet
Sykehuset Østfold
Telemark
Lovisenberg
Diakonhjemmet
Sunnås
Martine Hansens hospital
Volvat
ALERIS
Feiringklinikken
Glittrklinikken
Helsehuset Kongsberg

This is a non-profit service; the salary for physicists and traveling costs related to the work done in a hospital are paid for by the receiving hospital. To the extent that it is feasible each hospital has one contact physicist working together with radiologist and technicians in the radiology department. Multidisciplinary teamwork is one important factor of success. The services offered are:

System acceptance tests
- Image quality and radiation dose
- Quality assurance tests performed annually
- Multidisciplinary radiation dose versus image quality optimization projects within CT
- Trauma
- Neuroradiology
- Intervention
- Pediatrics
- Lectures for surgical personnel using X-ray equipment
- Lectures at the radiological and nuclear medicine departments
- Dose measurements and dose estimates
- Consultancy in purchases of new radiology modalities

The economical benefits of a regional physicist service includes reduced personnel needs due to recirculation of lectures, reports and knowledge between the physicists in the group. Also less measuring equipment is needed in the region due to a centralised pool of equipment. Other regional benefits are the achievement of high competence in CT, X-ray, MR, and nuclear medicine due to the exchange of experience and knowledge from different laboratories and hospitals. Technological problems are solved by experience from previous similar problems in other sites, and development of QA methods and procedures are consolidated in the group of physicists.
COURSES

The section is responsible for two master courses in physics at the University of Oslo: “FYS 4760 Physics in diagnostic X-ray” and “FYS-KJM 4740/9740 MR-theory and medical diagnostics” and one CT post educating course (“ViCT”) for radiographers at the University college of Oslo.

The section arranged workshops in acceptance testing and quality assurance testing for MR scanners and SPECT/CT, PET/CT and nuclear medicine for Norwegian physicists. Besides, the Section was co-responsible for a Nordic Course in CT colonography in Oslo in 2012 and in represented in the committees of The annual meeting for Medicial physicists (Medfys) and the annual radiological meeting (Vårmøtet i radiologi) in 2012.

QUALITY ASSURANCE

Methodology for acceptance tests and quality assurance on diagnostic modalities as MR, PET-CT, nuclear medicine, CT, fluoroscopy and X-ray were revised and further developed. In 2011 QA on 315 modalities, from all vendors at the Norwegian market, were performed.
In the study, we will investigate the transfer of knowledge from color imaging in the media industry to the radiography/radiology arena. Our motive is to develop new models, and re-use established models, for predicting the diagnostic quality of images in terms of the sensitivity and specificity of diagnostic imaging protocols.

Optimization of diagnostic image quality and radiation dose of radiological tomography techniques using advanced post processing reconstruction algorithms

The aim of the study is to introduce new applications in CT tomography and tomography used in mammography screening to improve image quality and potentially lowering radiation doses to the patient.

New method for liver metastasis diagnostics in patients with colorectal cancer (part of the Oslo Comet study)

The aim of the study is to improve the diagnostics of liver metastasis using new features like CT liver perfusion.

Spectral imaging and iterative reconstruction in CT imaging, image quality and radiation doses

The aim of the study is to introduce new applications in the clinic using new CT reconstruction techniques to improve image quality and lowering radiation doses to the patient. The study will concentrate on iterative image reconstruction and spectral imaging. Interphantom and interscanner variations for Hounsfield units, homogeneity and low contrast detectability in Catphan 500/600. Quality assurance (QA) phantoms for computed tomography (CT) are commercially available. The aim of the study is to analyze the characteristics of the most commonly used QA phantoms, Catphan 500/504/600 (The Phantom Laboratory, NY) and examine possible interphantom and interscanner variations in HU, homogeneity and low contrast detectability.

Lifetime quality and lifetime cost of CT scanners from all vendors on the Norwegian market

The aims of the study are: Establishing a complete overview of image quality and radiation dose for CT scanners from all vendors on the Norwegian market, estimate lifetime quality performance and total lifetime cost for different types of CT scanners from all vendors and evaluate the recommended quality assurance tests and the frequency necessary to ensure safe patient examinations.
Ultralow dose chest CT
The aim of this study is to compare image quality, radiation dose and laboratory time for chest radiography (CR) with ultra low dose chest CT (ULD-CT) reconstructed with adaptive iterative dose reduction (AIDR 3D).

Monitoring radiation dose to personnel and patients during TAVI procedures

PARTNERS

Professor Per Skaane, MD PhD
Department of Radiology and nuclear medicine
Oslo University Hospital

Professor Bjørn Edwin, MD PhD
The Intervention Centre
Oslo University Hospital

Professor Erik Fosse, MD PhD
The Intervention Centre
Oslo University Hospital

Associate professor/Head of section
Hilde Merethe Olerud, Dr Ing
Norwegian radiation protection authority

Associate professor Anders Tingberg, PhD
Department of Medical radiation, Lund University
Sweden

Associate professor Dag Waaler
Faculty of Health, Care and Nursing, Health, Technology and Society, Gjøvik University College

Researcher Marius Pedersen
Norwegian Color Research Laboratory
Faculty of Computer Science and Media Technology
Gjøvik University College

Trond Mogens Aaløkken, MD PhD
Department of Radiology and nuclear medicine
Oslo University Hospital

Gaute Hagen, MD PhD
Department of Radiology and nuclear medicine
Oslo University Hospital

Lise Heiberg, MD
Department of Radiology and nuclear medicine
Oslo University Hospital

Claudius Reisse, MD
Department of Radiology and nuclear medicine
Oslo University Hospital

Joanna Kristiansen, MSc
Department of Radiology and nuclear medicine
Oslo University Hospital
The main research focus of the Advanced Neuroimaging Group (ANG) is related to functional MR imaging for different neurological conditions. There is currently a particular focus on MR-based imaging for diagnosis, prognosis, and treatment response assessment in patients with primary brain tumors (gliomas). A multicentre study for evaluation of diagnostic efficacy of MR-based perfusion imaging for diagnosis of gliomas is incorporated in the Norwegian Research Council (NRC)-financed project: Evaluation of functional Magnetic Resonance Imaging in the Diagnosis of Brain Tumors for Assessment of Clinical Efficacy (EMBRACE). As part of the EMBRACE project, a new prospective study is ongoing, which will assess the clinical utility of advanced MR-based imaging methods for evaluation of treatment response in high-grade glioma patients.

The ANG is a multi-disciplinary effort and is collaborating closely with many other groups both internally within the OUS and externally with world-class research groups in Europe and the US. The group also has a close link to industry through collaboration/co-development with software companies (NordicNeuroLab, Bergen, Norway and CorTechs Labs, San Diego, USA). The group has filed several patent applications related to novel image processing techniques which have been sub-licensed to our industrial partners. The ANG group members are further involved in a large number of imaging studies ongoing in the Oslo-region. In particular, the group provides MR expertise in several morphometric MR studies, where high resolution MRI is used to assess neurostructural changes related to neurodegenerative disease, Alzheimer’s disease, and normal aging.

SOFTWARE DEVELOPMENT – NORDICICE

The ANG has over the last years been central in the development of an extensive software package for advanced image processing in MRI, with special focus on dynamic analysis. The software package, called NordicICE, is now a commercial product sold in more than 20 countries. NordicICE is one of very few medical imaging analysis software packages for advanced perfusion analysis with full FDA-approval (510K). At Rikshospitalet, NordicICE has been fully integrated into (Sectra) PACS and is now an integral part of routine diagnostic MR procedures, including BOLD fMRI, DTI, and perfusion analysis. The ANG is currently preparing the NordicICE software package for integration into the next generation Sectra PACS (IDS7) and also focusing on expanding the functionality of the package towards automated tumor segmentation and implementation of advanced statistical methods for computer-aided diagnosis (CAD).

ONGOING PROJECTS

EMBRACE

Magnetic Resonance Imaging: A Novel Method for Improved Morphologic and Functional Assessment of Brain Tumors

nordicICE integration in PACS

Quantitative MR-perfusion

Automated white matter lesion quantification

PHD STUDENTS

Paulina Due-Tønnessen
Mentors: Atle Bjørnerud, Kyrre Eeg-Emblem
Evaluation of functional magnetic resonance imaging in the diagnosis of brain tumors for assessment of clinical efficacy

Tuva Hope
Mentors: Atle Bjørnerud, Inge Rasmussen, Asta Håberg
MR-based analysis of functional and hemodynamic parameters in brain tumors

Endre Grøvik
Mentors: Kjell-Inge Gjesdal, Atle Bjørnerud, Kathinka Kurz, Tryggve Storaas
Magnetic Resonance Imaging: a novel method for improved morphologic and functional assessment of breast tumors

Arvid Morell (Uppsala)
Mentors: Atle Bjørnerud, Håkan Ahlström
Quantitative tracer-based MRI perfusion – potentials and limitations

Per Selnes (Akershus University Hospital)
Mentors: Tormod Fladby, Atle Bjørnerud
Understanding early events in Alzheimer’s disease pathogenesis

POST DOC

Inge Rasmussen and Kyrre Eeg Emblem
The group is heavily involved in PET research and works together with the recently formed PET-CT core facility which serves three PET/CT scanners in OUS. The main activity has been connected to improve the understanding of how image formation affects the quantitative data in the images, physiologically gated studies and image processing to extract novel information from the PET-studies.

ONGOING PROJECTS

- The application of image processing in radiotherapy
- Automatic detection of tumor surfaces in FDG-PET for radio therapy planning
- Respiration gating by repeated breath-holds during PET data acquisition
- Combined ECG and respiration controlled acquisition in PET heart studies
- Simulation of image formation and properties by digital intensity diffusion, including small tumours and viable tumour rims around partly necrotic tumours
- Investigation into the possibilities of reducing radiation dose and improve image quality in CT diagnostics through the use of advanced image processing
- Studies of 64Cu-labeled porhyrines as a possible radiopharmaceutical to detect and characterize gliomas and other tumours by PET
- Detection of atherosclerotic plaque in the carotid arteries by FDG-PET
- Internal radiation dose estimation through serial SPECT and whole body studies in a Phase I clinical study with a new 177Lu-labelled antibody
- Separation of grey and white matter in FDG-studies of the brain by combining MRI, PET system parameter in the image processing
- Development of a multilayer phantom for the quality control of DATscan studies in Parkinsons disease
- Regional comparisons of the total performance of bone scans utilizing a transmission phantom

PHD STUDENTS

- Karsten Eilertsen
 Department of Medical Physics: *A Beams Eye View on geometric and dosimetric precision in external beam*
 Mentor: Professor Arne Skretting, The Intervention Center, Oslo University Hospital

- Kjersti Johnsrud
 Department of Radiology and Nuclear Medicine: *Imaging of Unstable Carotid Artery Plaque*
 Mentors: Professor David Russell, Department of neurology, Oslo University Hospital and professor Arne Skretting, The Intervention Center, Oslo University Hospital

- Ingerid Skjei Knudtsen:
 The use of FDG-PET in radiation treatment planning and treatment follow-up
 Mentors: Professor Eli Olaug Hole and professor Eirik Malinen, The faculty of Mathematical and natural sciences, University in Oslo, and Arne Skretting, The Intervention Centre, Oslo University Hospital

MR-PHYSICS

- **Cardiac MRI:** *Cardiac dysfunction in adjuvant breast cancer therapy; a MRI study.*
 Primary objective: This project is part of the PRADA study which is a collaboration between Akershus University hospital and Oslo University Hospital, Radiumhospitalet. PhD student: MD Siri Heck, Ahus.
 Mentors: MD Pavel Hoffmann, PhD Department of radiology and nuclear medicine, OUS
 Physicist Tryggve Holck Storås, PhD The Intervention Centre, OUS

- **Bowel MRI:** *MRC and MRI of patients with inflammatory bowel disease*
 This project is part of the Inflammatory Bowel South Eastern Norway (IBSEN) study which is a long term follow up study (now 20 years) of patients with inflammatory bowel disease. This is a collaboration between seven hospitals located in the south east of Norway.
 PhD student: MD Linda Tøft en Bakstad, Ahus.
 Mentor: MD Anne Negård PhD, Ahus.
 Coworker: Physicist Tryggve Holck Storås, PhD, The Intervention Centre, Oslo University Hospital
RESEARCH SUBJECT

The research group aims to develop and test new technologies in cardiovascular monitoring and to evaluate hemodynamic response of new and advanced cardiovascular image guided procedures. New technologies developed or investigated for measuring cardiac function and hemodynamic status include implantable 3D accelerometers, miniaturized ultrasound sensors, novel and radar technology. The sensors are tested in both clinical and experimental models in cooperation with many departments at OUS and external institutions.

ONGOING STUDIES:

1) Detection of regional and global myocardial ischemia in cardiac surgery with implantable sensor systems
2) Evaluation of left and right ventricular function by use of implantable sensors
3) The effect of therapeutic hypothermia on cardiac function
4) The role of therapeutic hypothermia and extra corporeal membrane oxygenation after cardiac arrest
5) Evaluation of cardiovascular response during and after trans aortic valve implantation (TAVI)
6) New prognostic markers for mortality and morbidity after the TAVI procedure

The research group consists of six senior researchers, six PhD-students and one Post Doc.

SENIOR RESEARCHERS
Per Steinar Halvorsen, MD, PhD
Jan Fredrik Bugge, MD, PhD
Erik Fosse, MD, PhD
Helge Skulstad, MD, PhD
Thor Edvardsen, MD, PhD
Svend Aakhus, MD, PhD

PHD CANDIDATES
Andreas Espinoza, MD
Viesturs Kerans, MD
Ole-Johannes Grymyr, MD
Harald Bergan, MD
Jo Eide, MD
Stefan Hylter, MD
Siv Hestenes, MD

POST DOC
Espen Remme, MSc, PhD

The biosensor research group focuses on developing technology for organ implantable sensors and carry out animal and human studies showing that it is indeed possible to detect serious organ events like insufficient blood supply (ischemia), organ rejection, bowel perforation and infection in organs.

We have developed a miniaturized PCO2 sensor (IscAlert™) that in real time monitors blood supply in the organ. In animal studies it has detected ischemia immediately in the heart after occlusion of the coronary artery, in the liver after occlusion of the hepatic artery, in the intestine after occlusion portal vein and in a model of hemorrhagic shock PCO2 sensors detected ischemia in all organs they monitored.

IscAlert™ is CE branded and has FDA approval. We have carried out studies with microdialysis catheters in more than 100 liver transplant patients, the largest study of its kind in the world. It was found that the most serious complication, hepatic artery thrombosis, was detected with 100% sensitivity and 100% specificity in close to real time. Rejection was detected with > 90% sensitivity and >83% specificity 3 – 7 days earlier than current methods. Also conditions like small bowel perforation and organ infection was detected.

The research group consists of three senior researchers and six PhD-students.

SENIOR RESEARCHERS
Tor Inge Tønnessen, MD, PhD
Gunvald Kvarstein, MD, PhD
Lars Wælgaard, MD, PhD

PHD CANDIDATES
Håkon Haugaa, MD
Søren Pischke, MD
Gisli Bjørn Bergmann, MD
Lars Holhjem, MSc
Runar Strand-Amundsen, MSc
Faisal Qureshi, Medical student
COMPLEMENT RESEARCH GROUP
Leader: Professor Tom Eirik Mollnes, MD, PhD

RESEARCH SUBJECT

The role of complement in human disease
Complement is part of the innate immune system protecting the host against invading micro-organisms. Regulatory control mechanisms normally prevent the system from extensive and systemic activation, thereby protecting the host from self damage. Under various disease conditions complement is improperly activated, either locally leading to tissue damage or systemically with risk of serious homeostatic disturbances.

A primary research goal for the Complement Research Group is to elucidate the role of complement as a primary inducer of the inflammatory reaction and thereby form a basis for a future therapeutic approach in complement-mediated disease processes.

For this purpose we have developed novel assays for detection and quantification of complement activation products based on monoclonal antibodies to activation dependent epitopes on a number of complement components; the most important one being the assay for TCC (the terminal SC5b-9 complement complex). These assays are used to detect complement activation experimentally and clinically and to evaluate the effect of various complement inhibitors in experimental models. In a novel in vitro human whole blood model where all potential inflammatory mediators are able to interact mutually, we are currently studying the effect of complement inhibition on a number of arms of the inflammatory network. In particular we are focusing on the cross-talk between complement and the Toll-like receptors with emphasis on CD14. The main current projects aim to elucidate the role of complement and CD14 in sepsis, systemic inflammatory response, ischemia-reperfusion injury and transplant rejection. Porcine models for these purposes are established at the Interventional Centre and constitute a major part of the research of the complement group.

ECONOMIC AND ORGANIZATIONAL CONSEQUENCES OF NEW PROCEDURES AND TREATMENTS
Leader: Professor Erik Fosse, MD, PhD

GROUP MEMBERS
Bjørn Erik Mørk, PhD OUS/IFI UIO/BI
Kjersti Wendt, research fellow MSc OUS / Med fak UIO
Brith Andresen, research fellow MSc OUS / Med fak UIO
Ivar Sønbø Kristiansen, professor PhD Inst helse UiO
Jasmina Masovic, research fellow MSc IFI UiO
Olga Mikhailova, research fellow MSc BI
Margunn Aanestad, professor PhD IFI UIO
Håkan Håkansson, professor PhD BI
Per Ingvar Olsen, ass professor PhD BI
Thomas Hoholm ass professor PhD BI
Vinod Mishra, consultant PhD OUS

CHALLENGES
New technology and knowledge has increased the number of treatment options. It also challenges the existing structures in hospital. Catheter-based x-ray guided treatment has allowed cardiologists and radiologists to treat disorders where open surgery was the only option. The group studies organizational and economical consequences of new methods. This includes changes in hospital organization. Decision making and interaction between the different specialties when new methods are introduced. Cost utility analysis of new methods is also part of the programme.

GOAL
To establish knowledge of how changes in medical technology and methods challenges the health care system, and provide support to the decision makers in Norwegian Health Care.

PROJECTS
“Changes in organisation of vascular surgery in the Health South East region and at Oslo University hospital.” PhD project Kjersti Wendt. Funded byy OUS

“Economic and patient and close reative experience outcome after percutaneous pulmonary valve replacement in congenital cardiac disease.” PhD project Brith Andresen. Funded by Helse Sør-Øst research funds

“Fra lokale gjennombrudd i kunnskap til integrasjon i medisinsk praksis (KINT)” PhD project Jasmina Masovic and Olga Mikhailova and one postdoc, Bjørn Erik Mørk, funded by Norwegian research council VERDIKT programme
SECTION FOR ANESTHESIA RESEARCH

CARDIOVASCULAR SURGERY AND ADVANCED DISTRIBUTED LEARNING

Leader: Jacob Bergsland, MD, PhD

GROUP MEMBERS
Jacob Bergsland, MD, PhD, Cardiothoracic Surgeons
Karl Øyri, Research Nurse
Ilangko Balasingham, Professor, PhD
Hugues Fontanelle, PhD
Peyman Mirthaheri, Professor at HiO, PhD
Samir Delibegovic, Professor at UKC, Tuzla, MD, PhD
Zoran Gajic, M.Sc, CEO Exit Centre, Responsible E-Health Initiative, BIH
Emir Mujanovic, MD, PhD, Chief of Surgery, BH Heart Centre, BIH

RESEARCH PROFILE

The Main Focus of the group is:

1) The Group has several active projects. A large OUS based study focuses on outcomes of patients going through Transcatheter aortic valve implantation. Another project is endovascular aortic interventions. A third project is repair of mitral regurgitation by Mitraclip. These three projects are performed together with the Departments of Thoracic Surgery, Cardiology and Radiology. A development project done together with the University College of Oslo’s School of Engineering is developing a new catheter-based instrument for mitral valve repair. The group is participating in many international research constellations focused on implantable sensors and actuators.

2) The group has been main partner in international development projects of technological and medical character. Together with partners in Bosnia and Herzegovina an E-Health portal was developed (www.ezdravlje.org). The project was funded by the Ministry of Foreign affairs. A project for advanced simulation training of endoscopic surgery and a corresponding E-learning portal is in progress together with SimSurgery, a company based in Oslo.

THE GROUPS LONG TERM GOALS

The groups long term goal is to develop and test new minimally invasive methods of cardiovascular therapy, and improving health care by developing sensors and on-line medicine.

PROJECTS

Project 1: Transcatheter aortic valve implantation
Project to develop quality of life, cost and risk/benefit ratios of the new procedure compared to traditional surgery.

Project 2: Mitraclip
Evaluation of clinical value of the Mitraclip device.

Project 3: BIPS
A project led by SimSurgery Development and validation of advanced distributed learning.

Project 4: Ultrasponder
A project to develop an implantable sensor which can be charged and communicate by ultrasound with an outside control unit. To be used in chronic congestive heart failure.

Project 5: E-Helse portal in Kosovo
Planned project for the development of an E-Health Portal for Kosovo, based on the experience from the Health Portal in Bosnia.

Project 6: HERD
Higher Education Research and Development for BIH. Project with BUC (Buskerud University College). Cooperation project between the Norwegian partners and Universities in Banja Luka and Tuzla, BIH.

Project 7: New method for endovascular repair of the Mitral valve

Project 8: Video monitoring of cardiovascular status and evaluation of microcirculation of skin and mucous membranes.
Project with NTNU and Rochester Institute of Technology, NY, USA.
COLLABORATIONS

The group cooperates closely with multiple departments in Oslo University Hospital, other Norwegian Universities in addition to University of Oslo and international academic and corporate organizations.
ABOUT

Development and assessment of minimal invasive therapy in all surgical fields.

Development and assessment of local ablation in liver malignancies, Cryotherapy, Radio frequency ablation and High Intensity focused ultrasound (HIFU).

Development of and assessment of Implants from Biomedical material, (percutaneous implants for stomas.)

Development and assessment of a 3D map for liver and pancreas used to navigate before and during the navigation.

Development and assessment of a new database platform including possibilities to make data from this platform anonymous and use them in public search engine, e.g. PubGen.

Development and assessment of training programs for laparoscopic and single port surgery (LESS).

LONG TERM GOALS

Completion of above mentioned research program. Initiate, stimulate and assess more advanced minimal invasive procedures, e.g. Whipple’s procedure and advanced liver resections. Assessment of 3D vision to see if 3D will simplify laparoscopic surgery. Assess use of robots in surgery.
RESEARCH GROUPS

PROJECTS

OsloCoMet-study:
Oslo randomized laparoscopic vs. open liver resection for colorectal metastases – study.

Study 1: Surgical stress and Immunosuppression
To compare stress and immunosuppression following laparoscopic and open liver resection.

Study 2: Immediate and short term outcomes
To compare intraoperative and early postoperative outcomes, and immediate oncologic outcomes.

Study 3: Postoperative pain and quality of life
- To compare health related quality of life before the procedure, on 2nd postoperative day and in 4, 8, 12 months after the procedure.
- To compare pain on the 2. postoperative day and after 1 month.

Study 4: Repeat resections
To define and compare surgical outcomes and major oncologic indexes between sub-groups of repeat resections.

Studies 5-6: Long term oncologic outcomes
- To define and compare major oncologic indexes in the 3 and 5 year follow-up period (Study 5)
- To define and compare major oncologic indexes in 10 year follow-up period (study 6)

Study 7: CoMet Mol
The aim is to perform molecular characterization of biological samples harvested perioperatively (Biobank) and during follow-up and results correlated with clinical end points.

Study 8: CoMet anti-tumor immunology
The aim is to evaluate immunological parameters related to anti-tumour immunity and inflammatory factors.

Study 9: CoMet Imaging
The aim is to compare CT perfusion to conventional CT and MRI, with respect to the detection of liver metastases from colorectal carcinoma.

Project TAVI
Project MitraClip
Project MecMed (COREMINE/Metajournal)
Project 3D map and navigation (liver and pancreas)

PHD CANDIDATES

Irina Pavlik Marangos
Airazat Kazaryjan
Åsmund Avdem Fretland
Tom Nordby
Kim Anonsen
Milan Spasojevic
Sven Petter Haugvik
Leonid Barkhatov
Mark Shmarvonyan
Martin Johansson
Rahul P. Kumar
Hilde Kjernlie Andersen

COLLABORATION

SimSurgery, Oslo
Nasjonalt kompetansetjeneste for ultralyd og bildeveiledet behandling, Trondheim
Tumorbiologi, Radiumhospitalet, OUS
PubGen, Oslo

A strong cooperation between the different research groups in The Intervention Centre
MEDICAL ROBOTICS
VISUALISATION AND NAVIGATION

Associate professor: Ole Jakob Elle, PhD

GROUP MEMBERS

Ole Jakob Elle, Section Manager
– Technology Research/Associate Prof., PhD
Frederic Courivaud, Senior Researcher, PhD
Espen Remme, Senior Researcher, PhD
Laura Slaughter, Senior Researcher/Ass. Prof., PhD
Hugues Fontenelle, Senior Researcher, PhD
Phuong Nguyen, Postdoc, PhD
Rafael Palomar, Researcher/Software developer, MSc
Abubakr El Dirdiri, PhD fellow, MSc
Kim Mathiassen, PhD fellow, MSc
Dilla Handini, PhD fellow, MSc
(Also at ROBIN-group at IFI/UIO)
Egil Utheim, Researcher, MSc
Ralf Greisiger, PhD fellow, MSc
(Also at ROBIN-group at IFI/UIO)

RESEARCH PROFILE

Most minimally invasive procedures restrict the access and direct vision to the regions which require surgery. Such procedures require intra-operative image modalities such as ultrasound or endoscopic images to be able to monitor the surgery real-time. In many cases this information is not sufficient to perform the procedure accurately and safely. Merging information acquired pre-operatively, mainly from for instance MRI, CT or PET, with intra-operative data can increase the basis for decisions and thereby improve the safety and accuracy of the procedure.

The Medical Robotics, visualization and navigation group develops cutting edge technological solutions which support minimally invasive procedures. The research focus is on image processing methods that are key elements in any software system which supports minimally invasive procedures. In particular, we are focused on developing real-time image-segmentation and — registration methods where segmentation methods finds important anatomical structures such as tumors and vessel structures in images, while registration methods enables fusion of images. Visualization and navigation is required to present the medical images to the surgeon intra-operatively. We are developing visualization systems which use advanced techniques such as augmented reality and volume rendering for this purpose. Robotic surgery which so far primarily has been tele-manipulators like Da Vinci, will in the future in addition to use real-time sensors like force/torque, inertia (accelerometer/gyro) and 3D video be more and more cross-linked with medical image information and move toward automation of surgical procedures. The research group is doing research in all these fields of technology facilitating minimally invasive surgery.

LONG TERM GOALS

The research group aims to be nationally and internationally leading research environment in technological solutions for image guided minimally invasive treatment. The group will strive to have competent personnel within the following technological areas:

• Real-time Image-processing
 (image analysis, segmentation...)
• Real-time volume visualisation
• Navigation technology
• Robotic technology
• Real-time sensing
• Technology support to Minimally Invasive Treatment in the hybrid OR’s in general

The research group want to further extend the national and international research networking by applying research grants as coordinator through NFR and EU-calls as well as participating in consortiums within EU initiatives.

The group will strive towards increasing the number of publications in peer reviewed journals and conferences of high standing.

PROJECTS

The section is partly financed through the hospital (permanent staff), but to a larger extent through projects funded by NFR and EU. We are currently participating in 3 EU-projects as well as several NFR-projects and projects financed by Innovasjon Norge.

IIIOS

(Integrated Intra-operative Imaging Operating System): The scope of the IIIOS consortium is to provide technology and training for the integration of ultrasound and biophotonics based imaging guidance with magnetic resonance imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET) to define the specs of an Integrated Interventional Imaging Operating System (IIIOS) aimed at minimal invasive treatment of common life-threatening disorders, e.g., cancer, cardiovascular disease and structural heart defects.

SCath (Smart Catheterization):

SCATH aims to provide the interventionalist with visual and haptic tools for robust and accurate catheter guidance, which will be developed through novel approaches, by fusing preoperative patient-specific anatomical and mechanical models and intra-operative data streams from in situ sensors.

I-SUR (Intelligent Surgical Robotics):

This project addresses a very complex problem that can be expressed in a very simple form: is it possible to automate surgery? To explore the feasibility of a solution to this problem, in this project we develop general methods for cognitive surgical robots capable of combining sensing, dexterity and cognitive capabilities to carry out autonomously simple surgical actions, such as puncturing, cutting and suturing.

MUSIK 2020 (Multidisciplinary skills for the Biomedical Engineers of 2020): – Submittet application Nov. 2012 to Marie Curie EU-ITN-actions as Coordinator.

Key to the success of platforms for selecting patients and informing optimal treatment is the development of novel biomedical engineering (BME) based technologies for diagnosis, minimally invasive therapy and monitoring. Musik2020 is a coordinated plan of individual research projects addressing two most significant health issues of our society: cardiovascular disease and cancer. Its main focus is the development of engineering and information technologies for improved management of these diseases, where the multi-disciplinary dialogue and work between clinicians and biomedical engineers is critical.

COLLABORATIONS

• University of Dundee
• University of St. Andrews
• Norwegian University of Science and Technology
• University of Homburg, SAAR
• Delft University of Technology
• MR Comp GmbH
• University of Lubeck
• Fakultní Nemocnice u sv. Anny v Brne
• GE Medical Systems
• Katholieke Universiteit Leuven, Leuven, Belgium
• Oslo Universitetssykehus Hf, Oslo, Norway
• Zürcher Hochschule für Angewandte Wissenschaften, Winterthur, Switzerland
• Imperial College London, London, United Kingdom
• Institute of Biomechanics, Center of Biomedical Engineering, Graz, Austria
• Endosense SA, Geneva, Switzerland
• Scuola Superiore Sant’Anna, Pisa, Italy
• University of Verona
• Oslo University Hospital
• Tallin University
• San Raffaele Hospital
• Yeditepe University
• ETH Zurich
• King’s College London
• University of Oxford
• GE Vingmed
• Cascination
• Sintef Medical Technology
• Sheffield Hallam University
• Universidad de Zaragoza
• Universidad politecnica de Madrid
INTERNATIONAL VISITORS

Associate Professor Ali Khaleghi, The K. N. Toosi University of Technology, Tehran, Iran, 3 months.

Assistant Professor Daisuke Anzai, Nagoya Institute of Technology, Nagoya, Japan, 4 months.

Stefan Fraedrich, MSc, Technical University of Dresden, Dresden, Germany, 11 months.

Jens Abraham, Technical University of Dresden, Dresden, Germany, 10 months.

Daninius Jankunas, MSc, Vilnius University, Vilnius, Lithuania, 3 months.

RESEARCH PROFILE

The sensors, signals, and systems research group aims to facilitate deployment of intelligent sensors and systems for different procedures in surgery, minimal invasive therapy and ambient point of care monitoring. The main focus area of research is in efficient design and development of novel sensors, power efficient real time signal processing algorithms, sensor data fusion, and wireless communication solutions for in vivo and ex vivo purposes. Some of our activities have been on studying the use of ultra wideband medical radars to estimate blood pressure, blood flow and tissue/organs motions. Furthermore, novel signal processing algorithms to facilitate power efficient processing of digital data in sensors, which are popularly called as sensor nodes in wireless communications networks. The digital sensor data fusion and multi parameter analysis are also active areas of research. We are working to design reliable, power efficient and robust wireless body area sensor networks for in vivo (implantable) and ex vivo use.

As part of the research results, two patent applications were filed in 2012. Since 2011, we are working on nano scale communication networks with the aim to having interfaces and communications with neuron for neuro-degenerative with more than 8 journal and conference papers published so far.

We have a close collaboration with the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU), Trondheim, and several national and international research institutions and companies participate in different projects.

WIRELESS SENSOR NETWORKS

Leader: Ilango Balasingham, professor, PhD

GROUP MEMBERS

Senior researchers
Jacob Bergsland, MD, PhD
Sang-Seon Byun, PhD
Pål Anders Floor, PhD
Fei Gao, PhD
Amir Jabbari, PhD
Anna Kim
Rie Komuro, PhD
Fabio Mesiti, PhD
Raul Chavez-Santiago, PhD

Junior researchers (PhD students)
Nguyen Trung Hieu, MSc
Fatemeh Kazemeyni, MSc
Hessam Moussavnik, MSc
Minh-Long Pham, MSc
Lars Erik Solberg, MSc
Babak Moussakhani, MSc
Kashif Habib Sheikh, MSc
Stig Støa, MSc
Mladen Veletic, MSc
Karl Øyri, MSc
In addition to several ongoing projects, the group participates in the projects COST action “Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless” and COST action 0902 “Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless”, which are funded by the COST, Research Council of Norway and Ministry of Foreign Affairs for 4 years. Furthermore, we are part of the HERD projects funded by the Ministry of Foreign Affairs, where we have 1 PhD student and 2 master students.

The research group, which is split between Oslo and Trondheim, has presently 10 PhD fellows and 8 Post doctoral fellows employed through the projects. Stig Støa defended his PhD thesis “Wireless Sensor Network for Medical Applications” in June 2012 and works as R&D Engineer at Novelda AS in Oslo. Dr. Sang-Seon Byun, Dr. Fabio Mesiti, Dr. Fei, Gao, and Dr. Amir Jabbari completed their Postdoctoral training and returned to their home countries such as South Korea, Italy, China, and Iran, respectively. Dr. Rie Komuro joined as an ERCIM Postdoc from Japan while Kashif Habib Sheikh and Mladen Veletić joined as PhD students.

LONG TERM GOALS

The long term goal is to become the Norwegian Center of Excellence with international recognition.

PROJECTS

The project portfolio consists of the following projects:

- Medical Sensing, Localization, and Communications using Ultra Wideband Technology (MELODY), large scale ICT project funded by the Research Council of Norway for 2008-2012 successfully completed the mid term evaluation and has been approved for three more years funding from 2013.

- Adaptive Security for Smart Internet of Things in eHealth (ASSET), approved for funding by the Research Council of Norway for four years.

- NORBAS, approved for funding by the Ministry of Foreign Affairs of Norway for three years.

- Innovation grant for CameraPill, approved for funding by the Health Region South East for one year.

- EU FP7 project ULTRASPOINTER completed after running for 4 years.

INTERNATIONAL VISIBILITIES

The IEEE/ACM international conference on Body Area Networks (BODYNETS) was successfully organized and chaired by the group in Sept. 2012, where some 130 participants attended the conference from worldwide. Furthermore, keynote presentations were given at the IEEE Symposium on Medical Information and Communications Technologies (ISMICT) in San Diego, CA, USA, March 2012 and the International Conference on Wireless Technology for Healthcare and Medicine, Oslo, Norway, April 2012.
A number of research projects using the 3T MR scanner or the combined angiographic suite are performed in cooperation with different academic partners, including Departments of Neuropsychiatry and Psychosomatic Medicine, Oncology, Ear Nose and Throat, Neurosurgery, Neurology, Anesthesiology and Radiology. The research topics cover brain, spine, liver, prostate, brachial plexus and inner ear.

A total of 11 PhD programs used the angiographic suite or the MR scanner for their research in 2012:

Cand. Med. Trygve Kjelstrup:
Axillary plexus block, nervestimulator, ultrasound and MRI
Mentors: Øivind Klaastad and Harald Breivik, Department of Anaestesiology, and Per Kristian Hol, The Intervention Centre, Oslo University Hospital

Cand. Med. Torbjørn Elvsåshagen:
Neuropsychiatry in patients with bipolar disorders
Mentors: Ulrik Frederik Malt and Stein Andersson, Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital. Espen Dietrichs, Department of Neurology, Oslo University Hospital. Ole Andreassen, Institute of Psychiatry, University of Oslo

M.Sc. Ralf Greisiger:
Cochlear Implants and DynaCT imaging
Mentors: Greg E. Jablonski and Terje Osnes, Dept of Ear Nose and Throat, Oslo University Hospital. Ole Jacob Elle and Per Kristian Hol, The Intervention Centre, Oslo University Hospital and Jon K. Shallop, Mayo Clinic Medical School

Cand. Med. Jarle Sundeth:
Factors affecting the results of surgical treatment of cervical disc prolapse
Mentors: Frode Kolstad, Department of Neurosurgery and Øystein Nygård, Trondheim University Hospital

Cand. Med. Karolina Ryeng Skagen:
The vulnerable carotid artery plaque
Mentor: David Russell, Department of Neurology, Oslo University Hospital

Cand. Med. Geir Ringstad:
Assessment of Intracranial Pulsatility and Cardiac-beat Intracranial Volume Change using MRI
Mentors: Per Kristian Eide, Department of Neurosurgery, Kyrre E. Eblem, The Intervention Centre, and Noam Alterin, University of Miami, Florida, USA

Astrid Almaas, Elin Blakstad, Sissel Moltou and Kenneth Strømme:
Nutrition, growth and development of premature children
Mentor: Christian A. Drevon, Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo

Cand. Psych. Gudmundur Skarphedinsson:
In vivo MR spectroscopy as a neuroimaging diagnostic study in children and adolescents with obsessive-compulsive disorders
Mentor: Tord Ivarsson, Regionsenter for barn og unges psykiske helse (PBUP Øst og Sør)
MR GUIDED HIGH INTENSITY FOCUSED ULTRASOUND TREATMENT

Group leader: Per Kristian Hol, MD, PhD

High Intensity Focused Ultrasound (HIFU)-therapy is completely non-invasive as the ultrasound energy is delivered outside the body, but focused in defined areas in an organ.

MR provides three-dimensional treatment planning and real-time temperature feedback. Integrating HIFU in MR-scanners melds the technology for visualization and treatment, optimize the procedure and increase the therapeutic potential of HIFU treatment.

The 3 T MR at the Intervention Centre has integrated HIFU equipment as part of a research agreement with Philips Medical Systems. Focus has been on both basic and clinical research projects. Organs to be studied have been uterus (uterine fibroids), liver and prostate.

SENIOR RESEARCHERS

Per Kristian Hol, MD, PhD
Bjørn Edwin, Professor, MD, PhD
Frederic Courivaud, PhD
Tryggve Storås, PhD

PHD CANDIDATE

Eric Dorenberg, MD (defended his thesis in 2012)

COLLABORATIONS

Philips Medical System
Dept of Radiology, OUS
(Eric Dorenberg, MD, PhD, and Erik Rud, MD)
Dept of Gynecology, OUS
(Kirsten Hald, MD, PhD, and Eva Ring, MD)
Dept of Urology, OUS Aker
(Viktor Berge, MD, PhD, and Eduard Baco, MD)
Norwegian School of Veterinary Science
(Professor Lars Moe)
Dept of Pathology, OUS Radiumhospitalet
(Professor Aud Svindland)
NEURO COGNITIVE IMAGING

Group leader: Associate professor Tor Endestad

The fMRI group at the research group for cognitive and clinical neuroscience at the department of Psychology, UiO work with basic research related to cognitive functions.

The group is engaged in the study of memory and cognitive control. In one of the programs studies of early visual memory are combined with attention to better understand the building block of the human memory system. In addition memory errors (false memories) and the relationship between executive functions and impulse control are studied. Both patients with focal brain injuries and psychological disturbances are included in the research. In another line of projects studies of brain damaged patient address frontal lobe damage, hormone influence on cognitive functions. In 2012 projects on genetics and depression, ME patients and ADHD has been included.

Several projects with cooperation between the Centre and Oslo University Hospital (FRONT, Cerebellum) were continued in 2012.

In addition to basic research, the group participate in the development of functional MRI as part of presurgical planning and improvement of neuropsychological diagnostics.

ONGOING PROJECTS THAT CONTINUE IN 2012

PHD PROJECTS

Visual working memory
PhD student: Dag Alnes
Principal res: Tor Endestad, Bruno Laeng

Plasticity in the human visual system
PhD student: Markus Handal Sneve
Principal res: Tor Endestad, Svein Magnussen
PhD finalised in 2012
RESEARCH GROUPS

FRONT Frontal Lobe Injury and cognition
PhD Student: Marianne Løvås, Ingrid Funderud
Principal Res: Tor Endestad, Anne Kristin Solbakk, Magnus Lindgren. PhD M. Løvås finalised in 2012

Cerebellar damage and cognitive control
PhD Student: Torgeir Moberget.
Principal Res: Tor Endestad, Stein Anderson

Positive and negative placebo
PhD Student: Dan Mikael Ellingsen
Principal Res: Tor Endestad, Siri Leknes

POST DOC PROJECTS

Parametric BOLD activation in multiple object tracking: Prediction of individual differences in attentional performance
Post Doc: Thomas Espeseth
PhD: Dag Alnes

ADHD and Decision making
Post Doc: Guido Biele and Inge Rasmussen
Phd: Anastasia Movinkel, Mads Pedersen
Med Stud: Mats Fredriksen

MASTER STUDENTS

Unconscious processing of emotions
Master student Laura Bakke
Principal Res: Tor Endestad, Bruno Laeng

Language and cerebellum damage
Master student Eva Hilland
Principal Res. Tor Endestad, Torgeir Moberget

Multiple object tracking and visual neglect
Master Student: Dag Alnes
Principle Res: Tor Endestad, Thomas Espeseth, Bruon Laeng

fMRI as neurofeedback
Master Student: Andre S. Nilsen
Scientific statistics
The Intervention Centre 2012

CLINICAL PROCEDURES CUMULATIVE NUMBERS 2008 – 2012

PRE-CLINICAL PROCEDURES CUMULATIVE NUMBERS 2008 – 2012

Source: Datacor
SCIENTIFIC PUBLICATIONS CUMULATIVE NUMBERS 2008 – 2012

Year: 2008 2009 2010 2011 2012

NSD Conference Level 1 NSD Level 1 NSD Level 2

NSD is responsible for the Norwegian register of scientific journals, series and publishers.
Budget and expenditures

External funds administered by The Intervention Centre in 2012

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>INCOME</th>
<th>EXPENDITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Council of Norway</td>
<td>10.330.000</td>
<td>12.793.996</td>
</tr>
<tr>
<td>Regional Health Authority</td>
<td>5.257.716</td>
<td>3.344.268</td>
</tr>
<tr>
<td>European Commission</td>
<td>3.709.960</td>
<td>3.314.194</td>
</tr>
<tr>
<td>University of Oslo</td>
<td>520.000</td>
<td>520.000</td>
</tr>
<tr>
<td>Norwegian Cancer Society</td>
<td>1.330.000</td>
<td>593.621</td>
</tr>
<tr>
<td>Others</td>
<td>635.000</td>
<td>0</td>
</tr>
</tbody>
</table>
Publications
Scientific publications1 from The Intervention Centre 2012 – 2008

1 Scientific channels are journals, series and publishers that fulfill specific criteria given by the Norwegian register for scientific journals, series and publishers (NSD: www.dbh.nsd.uib.no/kanaler). There are two levels: Ordinary publication channels (level 1) and highly prestigious publication channels (level 2).

2012

Level 2 journals

Cognitive Radio for Medical Body Area Networks Using Ultra Wideband.

A man with abdominal pain: enough evidence for surgery?

3. Floor PA, Kim AN, Wernersson N, Ramstad TA, Skoglund M, Balasingham I.
Zero-Delay Joint Source-Channel Coding for a Bivariate Gaussian on a Gaussian MAC.

4. Kazemeyni F, Johnsen EB, Owe O, Balasingham I.
Formal modeling and validation of a power-efficient grouping protocol for WSN's.

Thirty-day outcome in children randomized to open and laparoscopic Nissen fundoplication.

Laparoscopic resection of exocrine carcinoma in central and distal pancreas results in a high rate of radical resections and long post-operative survival.
Surgery; 151(5): 717-23.

7. Mork BE, Hoholm T, Maaninen-Olsson E, Aanestad M.
Changing practice through boundary organizing: A case from medical R&D.

8. Morvan T, Reimers EW, Samset E.
Efficient Image-Based Proximity Queries with 0 Object-Space Precision.

Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion.
Level 1 journals

1. **Amini M, Gjovaag TF, Hisdal J, Mirtaheri P.**
 Novel Design of an Optical Probe for Detecting Perfusion Changes in Buccal Tissue.
 IEEE Sens J; 12(6).

 Bride and groom in systemic inflammation — the bells ring for complement and Toll in cooperation.
 Immunobiology; 217(11): 1047-56.

3. **Bergsland J.**
 Major innovations and trends in the medical device sector.

4. **Chavez-Santiago R, Balasingham I, Bergsland J.**
 Ultra wideband technology in medicine: a survey.

 Cognitive radio for medical body area networks using ultra wideband.

 Innovative technology-transcatheter aortic valve implantation: cost and reimbursement issues.

7. **De Lange C, Malinen E, Qu H, Johnsrud K, Skretting A, Saugstad OD, et al.**
 Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs.

8. **Djupesland PG, Skretting A.**
 Nasal deposition and clearance in man: Comparison of a bidirectional powder device and a traditional liquid spray pump.

9. **Dorenb erg EJ, Hol P-K, Jakobsen JÅ, Ring E.**
 Improved infarction rates in fibroids after the introduction of contrast-enhanced ultrasound during uterine artery embolization.

 Workflow for image-guided interventions: Characterisation and Validation. Towards the Integrated Imaging Operating Room of the future.
 Biomed Tech (Berl); 57.

11. **Floor PA, Kim AN, Ramstad TA, Balasingham I.**
 On Transmission of Multiple Gaussian Sources over a Gaussian MAC using a VQLC Mapping.

12. **Floor PA, Kim AN, Wernersson N, Ramstad TA, Skoglund M, Balasingham I.**
 Zero-Delay Joint Source-Channel Coding for a Bivariate Gaussian on a Gaussian MAC.

13. **Forså K, Strandén E.**
 Radiation dose to nuclear medicine technicians per unit activity of administrated 99mTc at four Norwegian hospitals.

14. **Gao F, Fei FX, Deng YF, Qi YB, Balasingham I.**
 A novel non-Lyapunov approach through artificial bee colony algorithm for detecting unstable periodic orbits with high orders.

15. **Gao F, Fei Fx, Xu Q, Deng YF, Qi Yb, Balasingham I.**
 A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems.

16. **Gao F, Qi Y, Balasingham I, Yin Q, Gao H.**
 A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises.

17. **Haugvik S-P, Labori KJ, Edwin B, Mathisen Ø, Gladhaug IP.**
 Surgical treatment of sporadic pancreatic neuroendocrine tumors: A state of the art review.

 Inflammatory markers sampled by microdialysis catheters distinguish rejection from ischemia in liver grafts.

19. **Ho QPN, Kang H-J, Suh Y-S, Elle OJ.**
 A Platform Stabilization Algorithm Based on Feedforward Visual-Inertial Servoing.

20. **Hope T, Westlye LT, Bjarnerud A.**
 The effect of gradient sampling schemes on diffusion metrics derived from probabilistic analysis and tract-based spatial statistics.
Early bedside detection of ischemia and rejection in liver transplants by microdialysis.
Liver Transpl; 18(7): 839-49.

22. Jubbari A, Balasingham I.
On the Modeling of a Nano Communication Network using Spiking Neural Architecture.

Comprehensive segmentation of subcortical brain volumes in early onset schizophrenia reveals limited structural abnormalities.

24. Kazemeyni FS, Johnsen EB, Owe O, Balasingham I.
Formal modeling and validation of a power-efficient grouping protocol for WSNs.

25. Kazemeyni FS, Johnsen EB, Owe O, Balasingham I.
Lecture Notes in Computer Science 2012; 7321: 143-57.

Exposure of the Human Brain to an Electromagnetic Plane Wave in the 100-1000 MHz Frequency Range for Potential Treatment of Neurodegenerative Diseases.

An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.

High-resolution MRI demonstrates detailed anatomy of the axillary brachial plexus. A pilot study.

29. Larsen ASF, Osterås BH.
Step back from the patient: reduction of radiation dose to the operator by the systematic use of an automatic power injector for contrast media in an interventional angiography suite.

30. Mesiti F, Floor PA, Kim AN, Balasingham I.

On localizing a capsule endoscope using magnetic sensors.

Bloodless off pump coronary artery bypass grafting treatment of choice for Jehovah’s witness patients.

33. Naerum E, Elle OJ, Hannaford B.
The Effect of Interaction Force Estimation on Performance in Bilateral Teleoperation.

Endoscopic treatment of bronchial carcinoids in comparison to surgical resection: A retrospective study.

35. Nguyen HT, Ramstad TA, Balasingham I.
Optimal and robust communication for a uniform source.
IET Commun; 6(6): 577-86.

36. Nguyen TT, Espinoza AW, Remme EW, D’Hooge J, Hoff L.
Transmural Myocardial Strain Distribution Measured at High Spatial and Temporal Resolution.

37. Pischke SE, Transtad C, Holhjem L, Halvorsen PS, Tønnesen TI.
Perioperative detection of myocardial ischaemia/reperfusion with a novel tissue CO2 monitoring technology.

38. Pischke SE, Transtad C, Holhjem L, Line PD, Håugaa H, Tønnesen TI.
Hepatic and abdominal carbon dioxide measurements detect and distinguish hepatic artery occlusion and portal vein occlusion in pigs.
Liver Transpl; 18(12): 1485-94.

39. Remme EW, Hoff L, Halvorsen PS, Opdahl A, Fosse E, Elle OJ.
Simulation model of cardiac three dimensional accelerometer measurements.
Med Eng Phys; 34(7): 990-8.

Assessment of pituitary adenoma volumetric change using longitudinal MR image registration.

White matter imaging changes in subjective and mild cognitive impairment.

Level 1 Conference papers

2011

Level 2 publications

Level 1 publications

Level 1 Int. Conference Proceedings

2010

Level 2 publications

Life-span changes of the human brain White matter: Diffusion tensor imaging (DTI) and volumetry.

10. Bjørnerud A, Emblem KE.
A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI.

Laparoscopic resection of colorectal liver metastases: Surgical and long-term oncologic outcome.

CSF biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate Alzheimer’s disease but not a frontostriatal network affected by healthy aging.

Level 1 publications

1. Revheim ME, Ræ K, Bruland OS, Bach-Gansmo T, Skretting A, Seierstad T.
Monitoring the Effect of Targeted Therapies in a Gastrointestinal Stromal Tumor Xenograft using a Clinical PET/CT.

2. Eldevik K, Nordhøy W, Skretting A.
Relationship between sharpness and noise in CT images reconstructed with different kernels.

3. Skretting A, Glomset O, Bogsrud TV.
A phantom for investigation of tumour signal and noise in PET reconstruction with various smoothing filters: experiments and comparisons with simulated intensity diffusion.

4. Skretting A.
A method for on-site measurements of the effective spatial resolution in PET image volumes reconstructed with OSEM and Gaussian post-filters.

White matter characteristics and cognition in prenatally opiate- and polysubstance-exposed children: A diffusion tensor imaging study.

Noninvasive methods for assessment of airway inflammation in occupational settings.

Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors.

8. Rødal J, Søvik S, Skogmo HK, Knutsen IS, Malinen E.
Feasibility of contrast-enhanced cone-beam CT for target localization and treatment monitoring.

Dose levels from thoracic and pelvic examinations in two pediatric radiological departments in Norway – a comparison study of dose-area product and radiographic technique.

10. Martinsen AC, Sæther HK, Olsen DR, Wolff PA, Skaane P.
Improved image quality of low-dose thoracic CT examinations with a new postprocessing software.

Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy.

SNR-optimized myocardial perfusion imaging using parallel acquisition for effective density-weighted saturation recovery imaging.

Level 1 Int. Conference Proceedings

1. **Byun SS, Balasingham I.**
 A Measurement Allocation Scheme for Reliable Data Gathering in Spatially Correlated Sensor Networks.

2. **Byun SS, Balasingham I.**

3. **Chavez-Santiago R, Khaleghi A, Balasingham I.**
 An ultra wideband propagation model for wireless cardiac monitoring devices.

4. **Djenouri D, Balasingham I.**

5. **Floor PA, Balasingham I, Ramstad TA, Meurville E, Peisino M.**
 Compression Schemes for In-body and On-body UWB Sensor Networks.

6. **Gordillo AC, Balasingham I.**
 Design of smooth ultra wideband pulses exploiting non-orthogonal properties of the Hermite pulses.

7. **Gordillo AC, Balasingham I.**
 On directive antennas application to implant – on-body UWB communications.

8. **Kazemeyni FS, Johnsen EB, Owe O, Balasingham I.**

9. **Khaleghi A, Balasingham I.**
 Characterization of ultra-wideband wave propagation inside human body.

 On ultra wideband channel modeling for in-body communications.

11. **Liang X, Chen M, Balasingham I, Leung V, Liang X.**
 Soft QoS Provisioning for wireless sensor networks:
 A cooperative communications approach.

12. **Moussakhani B, Balasingham I, Ramstad TA.**
 Distributed Signal Estimation Using Binary Sensors with Multiple Thresholds.

13. **Moussavinik H, Balasingham I.**
 Interference mitigation using pulse position and frequency modulation for multiband systems.

14. **Solberg LE, Balasingham I, Hamran SE.**
 Candidate Estimators for Aorta Diameter Estimation Using Monostatic Radar.

15. **Støa S, Chavez-Santiago R, Balasingham I.**
 An Ultra Wideband Communication Channel Model for Capsule Endoscopy.

16. **Støa S, Chavez-Santiago R, Balasingham I.**
 An Ultra Wideband Communication Channel Model for the Human Abdominal Region.
17. Wang Q, Balasingham I.
Non-Line-of-Sight Error Mitigation for Range Estimation in Dynamic Environments.

18. Øyri K, Ståa S, Fosse E.
A Biomedical Wireless Sensor Network for Hemodynamic Monitoring.

Not classified:
Balasingham I, Chavez-Santiago R, Bergsland J, Fosse E.
Ultra Wideband Wireless Body Area Network for Medical Applications.

2009

Level 2 publications

Automatic Glioma Characterization from Dynamic Susceptibility Contrast Imaging: Brain Tumor Segmentation Using Knowledge-Based Fuzzy Clustering.

2. Gilbert M, Fosse E.
Inside Gaza’s Al-Shifa hospital.

3. Hamidi V, Andersen MH, Oyen O, Mathisen L, Fosse E, Kristiansen IS.
Cost Effectiveness of Open Versus Laparoscopic Living-Donor Nephrectomy.

Automated Assessment of Whole-Body Adipose Tissue Depots From Continuously Moving Bed MRI: A Feasibility Study.

A randomized double-blind controlled trial of intra-annular radiofrequency thermal disc therapy – A 12-month follow-up.

Changes in cardiac and cognitive function and self-reported outcomes at one year after coronary artery bypass grafting.

Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal-parietal memory network.

8. Westlye LT, Walhovd KB, Bjornrud A, Due-Tonnnessen P, Fjell AM.
Error-Related Negativity is Mediated by Fractional Anisotropy in the Posterior Cingulate Gyrus-025EFA Study Combining Diffusion Tensor Imaging and Electrophysiology in Healthy Adults.
Cerebral Cortex 2009 Feb; 19(2): 293-304.
Level 1 publications

Level 1 Int. Conference Proceedings

PubMed-uncategorized

2008

Level 2 publications

Level 1 publications

25. **Frich L.** Local ablation of colorectal liver metastasis – a systematic review. Tidsskr Nor Laegeforen 2008 Jan 3; 128(1): 54-56.
Level 1 Int. Conference Proceedings

1. **Cornella J, Elle OJ, Ali W, Samset E.**
 Improving Cartesian position Accuraca of a telesurgical robot.

2. **Nærum E, Cornella J, Elle OJ.**
 Contact force estimation for backdrivable robotic manipulators with coupled friction.

3. **Nærum E, Cornella J, Elle OJ.**
 Wavelet networks for estimation of coupled friction in robotic manipulators.
 ISSN: 1050-4929

4. **Tschirner S, Liang X, Yi W.**
 Model-Based Validation of QoS Properties of Biomedical Sensor Networks.
 The International Conference on Embedded Software (EMSOFT2008) Atlanta, Georgia, USA, 2008; 69-78:

5. **Khaleghi A.**
 Single-Port Circular-Patch Polarization Diversity Antenna.

6. **Støa S, Lindeberg M, Goebel V.**
 Online analysis of myocardial ischemia from medical sensor data streams with Esper.
 Applied Sciences on Biomedical and communication technologies. ISABEL ‘08, 1st International Symposium, Aalborg, Danmark.

7. **Støa Stig, Balasingham I.**
 A decentralized MAC layer protocol with periodic channel access for biomedical sensor networks.

8. **Moussavinik SH, Balasingham I, Ramstad TA**
 Handling unknown NBI in IR-UWB system used in Biomedical Wireless Sensor Networks.

9. **Lie A, Grythe K, Balasingham I.**
 On the use of the MPEG-21 framework in medical sensor network.

10. **Liang X, Balasingham I, Byun SS.**
 A reinforcement learning based routing protocol with QoS support in biomedical sensor networks.
 In Prof. of the IEEE 1st Int Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL) 2008: 1-5: DOI: 10.1109/ISABEL.2008.4712578.

11. **Liang X, Balasingham I, Byun SS.**

12. **Leister W, Fretland T, Balasingham I.**
 Use of MPEG-21 for security and authentication in biomedical sensor networks.

13. **Leister W, Habtamu A, Groven AK, Balasingham I.**
 Treat assessment of wireless patient monitoring systems.

14. **Byun SS, Balasingham I, Liang X.**
 Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency.

15. **Byun SS, Balasingham I.**
 Power control via repeated coalitional games for the mission critical wireless sensor networks.
Publications

Editorials, chronicles and commentaries

2010

2009

2008

National Journals

2012

2011

2009
Publications
PhD theses 2012 – 2002

2012

1. **Eric Dorenberg.**
 Minimal invasive therapies for the treatment of symptomatic uterine leiomyomas – a multimodal approach.
 Department of Nuclear Medicine and Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2012. ISBN: 978-82-8264-191-3.

2. **Stig Støa.**
 Wireless Sensor Networks for Medical Applications.
 Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2012. ISBN: 978-82-8264-280-4.

3. **Irina Pavlik Marangos.**
 Minimally invasive surgery in abdominal endocrine organs.
 Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2012. ISBN: 978-82-8264-460-0.

4. **Tangui Morvan.**
 Efficient Proximity Queries for Minimally Invasive Surgery.
 Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2012. ISBN: 978-82-8264-559-1.

5. **Edvard Nærum.**
 Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2012. ISBN: 978-82-8264-394-8.

2011

1. **Jacob Bergsland.**
 Safe introduction and quality control of new methods in coronary surgery.
 Oslo University Hospital, Faculty Division of Clinical Medicine, Faculty of Medicine, University of Oslo. 2011. ISBN: 978-82-8072-714-5.

2. **Petter Risholm.**
 Intra-operative Non-Rigid Registration of Brain Images.
 Centre of Mathematics for Applications, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo. ISSN: 1501-7710.

3. **Lars Mathiesen.**
 Patient-reported outcomes after on-pump and off-pump coronary artery bypass surgery.
 The Intervention Centre, Oslo University Hospital, Department of Thoracic and Cardiovascular Surgery, Faculty Division of Clinical Medicine, University of Oslo. ISBN 978-82-8072-352-9.

4. **Tryggve Hølck Storås.**
 MRI of the prostate gland.
 The Intervention Centre, Oslo University Hospital, Faculty Division of Clinical Medicine, Faculty of Medicine. ISBN 978-82-8072-921-7.

2009

1. **Emblem K.**
 Combined structural, microvascular and functional mapping of brain tumors for improved diagnosis and treatment planning.

2. **Mørk BE.**
 Changing practices – A practice-based study of cross-disciplinary technology development in hospitals.
 The Interventional Centre, Oslo University Hospital, Rikshospitalet Faculty of Medicine, Department of Leadership and Organizational Management BI Oslo, Institute of Health Management and Health Economics, University of Oslo 2009. ISBN: 978-82-8072-343-7.

3. **Liang X.**
2008
1. Andersen MH.
Patient-reported outcomes following living donor nephrectomy.

2007
1. Hol PK.
Integrating Coronary Angiography into the Cardiac Operating Room.

2. Frich L.
Radiofrequency ablation of liver tumors. An experimental and clinical study.
Oslo: Dept of Surgery/The Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2007. ISBN: 978-82-8072-693-3.

2006
1. Skulstad H.
New insights into the function of normal and ischemic myocardium.
Oslo: Dept of Cardiology/Institute Surgical Research/ The Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. ISBN: 82-8072-847-3.

2. Lund C.
Neurological consequences of coronary surgery with or without cardiopulmonary bypass.
Oslo: Dept of Neurology/The Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. ISBN: 82-8072-662-4.

2005
1. Edwin B.
Advanced laparoscopy – from the research and development department to day care surgery.

2. Mirtaheiri P.
A novel biomedical sensor for early detection of organ ischemia.

3. Bjørnstad P.
Catheter-based treatment for persistently patent arterial ducts and for atrial septal defects in the oval fossa.
Oslo: Dept Paediatrics, The Interventional centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2005. ISBN 82-8072-149-5.

2004
1. Reimers M.
Mathematical methods for 3D visualization of organ geometry in image guided surgery and simulation.

2. Kvarstein G.
Tissue PCO2: for early detection of organ ischemia.

3. Elle J.
Sensor Control in Robotic surgery.

4. Klaastad Ø.
Evaluations of brachial plexus block methods by magnetic resonance imaging and development of a novel method.

5. Mala T.
Cryoablation of liver tumours. Monitoring, techniques and tumour effects.

2003
1. Samset E.
MRI-guided interventions. Technological solutions.

2002
1. Aanestad M.
Cultivating Networks: Implementing surgical telemedicine.
THE INTERVENTION CENTRE
Oslo University Hospital and
Faculty of Clinical Medicine, University of Oslo

www.ivs.no