THE INTERVENTION CENTRE
Oslo University Hospital and
Faculty of Clinical Medicine,
University of Oslo
A year of change

- In 2009 the merge between all the public hospitals in Oslo was started. In the new organisation The Intervention Centre will be part of the Clinic for Diagnostics and Intervention, together with all the laboratory departments and the radiology department. The clinic represents a comprehensive research environment that will benefit The Intervention Centre as a research and development department.

Both in 2008 and 2009 the activities in the Centre’s advanced ORs have increased, and there is an increasing number of procedures that have been developed at The Intervention Centre, but for various reasons cannot be exported back to the mother departments. Thus the planned expansion of the Centre in the surrounding buildings and the establishment of a unit for routine operations that require the Centre’s technology within The Intervention Centre framework need to be implemented.

We expect that the merge of the hospitals will facilitate the collaboration between the Intervention Centre and the various clinical departments, and therefore the demand for use of the facilities will increase.

All the research groups at the Centre had a high activity in 2009 resulting in three PhD dissertations and 58 publications. Through four EU-projects the research groups are international, representing scientists from all over the world.

The Intervention Centre will expand the international research collaboration in the coming years.

Erik Fosse
Head of Department
Main goals and objectives

MAIN GOALS AND OBJECTIVES

The Intervention Centre is a research and development department for image guided and minimally invasive therapy at Oslo University Hospital in Oslo.

The Intervention Centre has the following tasks:

1. Development of new procedures
2. Development of new treatment strategies
3. Compare new and existing strategies
4. Study the social, economic, and organisational consequences of new procedures on health care

The Intervention Centre works in all parts of the R&D value chain at Oslo University Hospital

BUSINESS DEVELOPMENT:

Innovation, IP

BASIC RESEARCH:

Phd’s
Publications

CLINICAL RESEARCH:

Phd’s
Publications
Treatment routines
Organisation

METHOD DEVELOPMENT:

New treatment
Quality improvement
Cost control

The Intervention Centre shall promote and work actively to protect new knowledge and facilitate commercial exploitation.

The research is focused in four strategic areas:

1. MR guided intervention and surgery
2. X-ray, CT, ultrasound, video-guided interventions and surgery
3. Robotics and simulators
4. Biosensors, data management and communication

DELIVERIES

The Centre delivers the following:

1. New clinical methods
2. Research
3. Intellectual property/innovation

ORGANISATION

The Intervention Centre is an independent hospital department. A National Advisory board with representatives from all universities and university hospitals in Norway and the main departments at Oslo University Hospital monitors and gives advice on research and activity.

In 2009 The Intervention Centre had a cross-disciplinary staff of 20 employees. Seven doctors, nurses, radiographers and engineers employed by other departments worked regularly at the Centre while a large number of medical staff from most departments in the hospital worked at a less regular basis at the Centre.

There was one university-employed professor (Erik Fosse) at the Faculty of Medicine, University of Oslo, one associate professor at the Department of Informatics, University of Oslo (Ole Jakob Elle) and one professor from the Department of Electronics and Telecommunication at the Norwegian University of Science and Technology (NTNU) in Trondheim (Ilangko Balasingham). Professor Atle Bjørnerud from the Department of Physics, University of Oslo established his research group at the Centre in 2006. In addition 23 scientists were working at the Centre by external funding.

STRATEGY

The Intervention Centre shall be a research and development resource for all the clinical and laboratory departments at Oslo University Hospital.

The Intervention Centre shall actively offer similar services to the healthcare community in Norway outside the hospital.

The Intervention Centre shall work as a link between technology institutions (commercial and academic) and the clinical medical environment in the hospitals.
FACILITIES

The Centre is located in a unique architectural structure. In the three suites advanced imaging equipment was integrated in an operation room environment. In 2008 all advanced imaging equipment was renewed. In the combined surgical and radiological suite, the conventional angiographic equipment was replaced by the Siemens Zeego system, based on robotic technology and containing new advances in imaging and functionality. Our MRI suite was completely rebuilt into a dual room suite where a 3T MRI-device was installed in one room beside a state of the art OR. The two rooms were separated by a sliding door, allowing surgery with standard equipment and intermittent MRI imaging. In the videoscopy room all systems are equipped with Olympus HD equipment.

MATRIX ORGANISATION

In order to facilitate effective execution of cross-disciplinary projects, the personnel and equipment at the Centre were allocated to four sections in a matrix organization. Each section was headed by a section manager. In each project a project manager was responsible for management and reporting to the section manager in charge. The advanced operation rooms and the staff were made available as a common resource for development and assessment of new methods. The operation rooms were managed by the head nurse Kjersti Wendt. Scientists/clinical departments outside the Centre were responsible for a substantial number of the projects run in 2009. 40% of the staff had a technological, non-medical background. By the end of 2009 the employees of The Intervention Centre came from 15 different nations all over the world. The Intervention Centre thus represented a unique multi-national environment of medical and technological expertise.
Research Groups

IMAGE GUIDED GENERAL SURGERY AND INTERVENTION

Section Manager Bjørn Edwin, MD, PhD

Several new techniques in laparoscopic surgery have been introduced in Norway through this group. Some of the methods are now routine procedures, like laparoscopic adrenalectomy and laparoscopic prostatectomy. The group validates new procedures and establishes effective training. Education programs in minimal invasive surgery in both gastrointestinal- and urological surgery are organized in collaboration with other hospitals in Norway, Sweden, Russia and Denmark.

The Department of Surgery is one of our main collaborators with research projects ongoing in:

- Minimal invasive surgery on the liver, pancreas, stomach, oesophagus, kidney, adrenal gland and colon/rectum
- Minimal invasive techniques in children
- Thermal liver ablation

PhD programs:

 Extracorporeal high intensity focused ultrasound ablation of liver malignancies
 Mentors: Bjørn Edwin, MD, PhD, The Intervention Centre, Oslo University Hospital. Erik Fosse, MD, PhD, The Intervention Centre, Oslo University Hospital.

2. M.Sc. Martin Johansson
 Percutaneous access and connection to visceral organs
 Mentors: Peter Thomsen MD, PhD, Institution for Clinical Sciences, University of Gothenburg, Bjørn Edwin MD, PhD, The Intervention Centre, Oslo University Hospital, Leif Hulten MD, PhD, The ColoRectal Unit, Sahlgrenska University Hospital.

RADIOLOGY RESEARCH AND IMAGE GUIDED INTERVENTION

Section Manager Per Kristian Hol, MD, PhD

A number of research projects using the 3T MR scanner or the combined angiographic suite are performed in corporation with different academic partners, including Stavanger University Hospital, The Paediatric Research Institute, Departments of Neuropsychiatry and Psychosomatic Medicine, Oncology, Ear Nose and Throat, Neurosurgery, Neurology, Anesthesiology and Radiology. The research topics cover brain, spine, liver, prostate, brachial plexus and inner ear. Programs for using the Flat-detector Computed Tomography technology of the angiographic system, for guidance of the insertion Cochlear Implant Electrode and for brain perfusion studies are under preparation.

PhD programs:

 Detection of organ injuries after hypoxia and resuscitation. An experimental study in piglets
 Mentors: Berit H. Munkeby and Ola D. Saugstad, Paediatric Research Institute, Oslo University Hospital.

2. Cand. Med. Trygve Kjelstrup
 Axillary plexus block, nervestimulator, ultrasound and MRI
 Mentors: Øivind Klaastad and Harald Breivik, Department of Anaesthesiology/The Intervention Centre, Oslo University Hospital, Albert Castellheim, Department of Anaesthesiology, Diakonhjemmet Hospital.

3. M.Sc. Håvard Kalvøy
 Bioelectrical properties of needle electrodes and human tissue, spatial and temporal dependencies
 Mentors: Sverre Grimnes and Ørjan G. Martinsen, Institute of Physics, University of Oslo.
Neuroplastisity in patients with bipolar disorders
Mentors: Ulrik Frederik Malt and Stein Andersson, Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Espen Dietrichs, Department of Neurology, Oslo University Hospital, Ole Andreassen, Institute of Psychiatry, University of Oslo.

Aspects of interventional procedures for treatment of uterine fibroids
Mentors: Jarl A. Jacobsen, Department of Radiology, Oslo University Hospital and Per Kristian Hol, The Intervention Centre, Oslo University Hospital.

5. M.Sc. Ralf Greisiger
Cochlear Implants and DynaCT imaging
Mentors: Greg E Jablonski and Terje Osnes, Dept of Ear Nose and Throat, Oslo University Hospital, Ole Jacob Elle and Per Kristian Hol, Intervention Centre, Oslo University Hospital, and Jon K Shallop, Mayo Clinic Medical School.

IMAGE GUIDED CARDIAC SURGERY AND INTERVENTION

Jacob Bergsland, MD

The heart group is in the process of developing multiple new programs, in the area of treatment and follow-up of cardiac patients. After keeping a strong research focus on beating heart coronary surgery, The Intervention Centre is increasingly focusing on projects related to the new exiting area of endovascular cardiovascular therapies and minimally invasive monitoring of cardiac function.

Ongoing projects in 2009:

1. **Aortic valve implantation through the endovascular route**
A pilot study was started in 2009 to establish both the transfemoral and transapical route for implantation of aortic valves. A large randomized study, focusing on short and long-term outcomes as well as cost benefit and life quality studies is connected to this study. The project is a cooperative project between cardiology and cardiac surgery departments within Oslo University Hospital and several other groups which will focus on the cost issues and studies related to quality of life.

2. **Pulmonary valve implantation in patients with congenital heart disease**
A highly successful project of pulmonary valve implantation in patients with poor function of the pulmonic valve has been initiated in cooperation with specialists from Oslo University Hospital departments for cardiac surgery and cardiology. Long term life quality studies and cost are being performed. This program follows a successful development of various procedures at the Intervention Centre for congenital heart disease; several of these have been successfully transferred to the interventional cardiology service.
3. **Heart sensor projects** have been a focus area for The Intervention Centre for a number of years. At present several experimental and clinical projects are ongoing. A three dimensional accelerometer, patented by The Intervention Centre is being tested out for possible commercial use after the feasibility of detecting abnormalities in heart motion due to ischemia has been demonstrated. Several PhD degrees are related to these devices. Similar research is ongoing using implantable ultrasound probes, the early results are encouraging. The CO2 sensor developed at the Intervention Centre has also been tested experimentally as a monitor of ischemia of the heart as well as in other organs.

4. **The Ultrasponder project** is funded by EU and is an exiting study where The Intervention Centre cooperates with multiple investigators within EU countries. The project which originates from the IVS engineering group will develop wireless sensors for use in patients with heart failure with the purpose of improving management of this very challenging group of patients which rapidly increase in size.

5. **International cooperation in clinical medicine**
 The Intervention Centre and affiliated groups continue to have government funded programs to assist in the development of the health care systems in countries in transition and other less fortunate countries. There are ongoing programs in Bosnia and Herzegovina and Palestine.

PhD programs:

Cand. Med. Jacob Bergsland

Safe Introduction and quality control of new methods in coronary surgery

Mentors: Erik Fosse, Intervention Centre and Jan L. Svennevig, Dept. of cardiothoracic and vascular surgery, Oslo University Hospital.

WIRELESS SENSOR NETWORKS

Professor Ilangko Balasingham, PhD

The sensors, signals, and systems research group aims to facilitate deployments of intelligent sensors and systems for different procedures in surgery, minimal invasive therapy and ambient point of care monitoring. The main focus area of research is in efficient design and development of novel sensors, power efficient real time signal processing algorithms, sensor data fusion, and wireless communication solutions for in vivo and ex vivo purposes. Some of our activities have been on studying the use of ultra wide band medical radars to estimate blood pressure, blood flow and tissue/organ motions. Furthermore, novel signal processing algorithms to facilitate power efficient processing of digital data in sensors, which are popularly called as sensor nodes in wireless communications networks. The digital sensor data fusion and multi parameter analysis are also active areas of research. We are working to design reliable, power efficient and robust wireless body area sensor networks for in vivo (implantable) and ex vivo use.

We have a close collaboration with the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU) in Trondheim and several national and international research institutions and companies participate in different projects. Collaboration with the Nordic academic and industry has been through the Nordic project *Biomedical Wireless Sensor Network (BWSN II)*, where the project has been successfully finished in December 2009 after three years. Similarly the *WIREMED* project on developing an implantable wireless sensor ended in December 2009 after a project period of 3.5 years.

The group participates in two new projects such as "Oslo Medtech Cluster" and COST action "Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless". Project "Oslo Medtech Cluster" is funded by Innovation Norway, SIVA and Research Council of Norway through the ARENA program with a budget of NOK 17.4 million for 3 years from November 2009. The project will be administrated by IT Fornebu. The COST project IC 0902 "Cognitive Radio and Net-
working for Cooperative Coexistence of Heterogeneous Wireless” is funded by the COST, Research Council of Norway and Ministry of Foreign Affairs for 4 years from November 2009.

There has been an effort to establish a test bed for designing, developing and testing new technologies in sensors and wireless systems at The Intervention Centre in collaboration with SINTEF and industry. The pilot study on establishing a test bed concluded in 2009 that it should be established as a project with the financial support from Innovation Norway, etc.

The research group, which is split between Oslo and Trondheim, has presently nine PhD fellows and seven Post doctoral fellows employed through the projects. Dr. Sang-Soon Byun joined the group as an ERCIM Postdoc fellow in 2007, where he will continue working in the WISENET project for another year and is located at NTNU in Trondheim. Dr. Ali Khaleghi, who joined as a Postdoc fellow in the WISENET project for two years since January 2008, returned to Iran in December 2009 but will be associated with The Intervention Centre throughout 2010. Dr. Djamal Djenouri, who joined as an ERCIM Postdoc fellow in October 2008, returned to Algeria after finishing his position at NTNU.

Dr. Raul Chavez-Santiago joined as a Postdoc fellow from February 2009 and will work in the MELODY project for two years. Dr. Jianguo Ding joined as an ERCIM Postdoc fellow for 9 months since April 2008 and Dr. Alex Cartagena Gordillo joined as an ERCIM Postdoc fellow for 12 months since June 2008. Both of them will be located at NTNU. Lars Erik Solberg, Babak Moussakhani and Nguyen Trung Hieu joined as PhD fellows in the MELODY project, where Lars Erik is with The Intervention Centre while Babak and Hieu are with NTNU.

Xuedong Liang visited Professor Victor Leung’s group at the University of British Columbia, Canada for 8 months returned in May 2009 and successfully defended his PhD thesis at the Department of Informatics at the University of Oslo on December 21, 2009. The defense committee consisted of Professor Xiaoming Fu of the Georg-August University of Goettingen, Germany, Dr. Yan Zhang (Josh) at the Simula Research Laboratory, Norway and Associate Professor Martin Steffen at the University of Oslo.

PhD programs:

1. M.Sc. Xuedong Liang
 Modelling tools for cross layer optimization in sensor networks
 Mentors: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Olaf Owe and Einar Broch Johansen, University of Oslo.

2. M.Sc. Stig Støa
 Ultra wide band impulse radio
 Mentors: Ilangko Balasingham and Erik Fosse, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Dag Wisland and Tor Sverre Lande, University of Oslo.

3. M.Sc. Hessam Moussavinik
 Super robust short range wireless sensor network
 Mentors: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Geir Øien and Tor Ramstad, Norwegian University of Science and Technology. Niels Aakvaag, Multihop Com AS.

 Distributed signal processing for power efficiency
 Mentors: Tor Ramstad, Norwegian University of Science and Technology and Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

5. M.Sc. Mariam Kaynia
 Adaptive spectrum allocation in wireless sensor network
 Mentors: Geir Øien and Tor Ramstad. Norwegian University of Science and Technology and Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.
6. M.Sc. Fatemeh Kazemeyni

Modelling tools and optimization of wireless sensor network

Mentors: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Olaf Owe and Einar Broch Johansen, University of Oslo.

7. M.Sc Lars Erik Solberg

UWB medical radar for estimating blood pressure

Mentors: Ilangko Balasingham and Erik Fosse, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Svein-Erik Hamran, Norwegian Defence Research Establishment.

8. Nguyen Trung Hieu

Information theoretical bounds for wireless sensor networks

Mentors: Tor Ramstad, Norwegian University of Science and Technology and Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

9. Babak Moussakhani

Signal processing for robust invivo-exvivo communication

Mentors: Tor Ramstad, Norwegian University of Science and Technology and Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

Post Doc projects:

1. Dr. Djamel Djenouri

Multi-objective QoS optimization in wireless sensor networks

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

2. Dr. Sang-Seon Byun

Development of Cognitive wireless sensor networks

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

3. Dr. Pål Anders Floor

Signal processing for robust wireless communications

Mentors: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology. Tor Ramstad, Norwegian University of Science and Technology.

4. Dr. Ali Khaleghi

Invivo and exvivo UWB applications

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

5. Dr. Raul Chavez-Santiago

Cognitive UWB sensor networks

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

6. Dr. Jianguo Ding

Deployment and management of wireless sensor networks

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.

7. Dr. Alex Cartagena Gordillo

On antennas and modulation for UWB sensor networks

Mentor: Ilangko Balasingham, The Intervention Centre, Oslo University Hospital and Norwegian University of Science and Technology.
The Intervention Centre is coordinating a joint project called “Micro-Heart” for detection of motion changes of the heart surface. The goal is to develop a system for early detection of ischemia through continuous per- and post-operative monitoring using a 3-axis accelerometer for patients undergoing coronary revascularization (Patent number: NO 20016385). The “Micro-Heart” project is in close collaboration with Vestfold University College in Tønsberg.

The Intervention Centre is responsible for the clinical research activity, and both an animal study and a human study are ongoing to verify the sensitivity and specificity of the detection method. Vestfold University is responsible for miniaturizing a three-axis accelerometer for incorporation into a temporary pace-maker electrode. The project is partly financed by the Research Council of Norway (NRC) with 4 PhD scholarships at Vestfold University College.

Together with the Department of Clinical Engineering, Professor Sverre Grimnes this group was also involved in the development of a sensor for measuring the sweat production in different parts of the body by a bioimpedance technique.

PhD programs:

 Basic and clinical studies on cardiac ischemia by biosensors
 Mentors: Erik Fosse and Tor Inge Tønnessen, The Intervention Centre/Dept of Anaesthesiology, Oslo University Hospital.

2. M.Sc. Christian Trondstad
 Development of a sensor for sweat measurement
 Mentor: Sverre Grimnes, Dept of Clinical Engineering, Oslo University Hospital.

The Biosensor research group has three main branches of interest, namely the biologic basis for ischemia and the choice of parameters for detection thereof, the second is the development of a specific pCO2 sensor and the third is developing methods for early detection of rejection in transplant patients. The biologic basis has been studied through animal experiments.

PhD programs:

 New clinical methods for detection of ischemia
 Mentor: Tor Inge Tønnessen, The Intervention Centre, Dept of Anaesthesiology, Oslo University Hospital.

2. Cand. Med. Søren Pischke
 Biosensors for detecting cardiac ischemia
 Mentor: Tor Inge Tønnessen, The Intervention Centre, Dept of Anaesthesiology, Oslo University Hospital.
 Tom Eirik Mollnes, IMMI, Oslo University Hospital.

 Microdilaysis monitoring in transplanted patients
 Mentor: Tor Inge Tønnessen, The Intervention Centre, Dept of Anaesthesiology, Oslo University Hospital.
 Tom Eirik Mollnes, IMMI, Oslo University Hospital.
PATIENT COMMUNICATION

Head of Department Professor Erik Fosse MD, PhD

As part of a program to make the journal available to the patients, a software program for automatic translation of medical terms into common Norwegian is being developed. The Thesaurus project has received support from Innomed to develop the application. One master thesis has so far been completed in this project.

ORGANISATION

Head of Department Professor Erik Fosse MD, PhD

The Intervention Centre co-operated with the Institute for Informatics and The Institute for Health Management and Health Economics at the University of Oslo, as well with the Norwegian School of Management (BI) in a research project focusing on the relationship between innovation, learning, technology and organizational change processes.

PhD programs:

Cand. Polit. Bjørn Erik Mørk

Organizing for learning and innovation in Norwegian hospitals – How new technologies challenge existing organizational structures and cultures

Mentors: Erik Fosse, The Intervention Centre, Oslo University Hospital, Johan Olaisen, Norwegian School of Management Oslo, Terje Hagen, Institute for Health Management and Health Economy, University of Oslo.

ADVANCED MR NEURO IMAGING

Professor Atle Bjørnerud, PhD

The main research focus of the Advanced Neuroimaging Group (ANG) is related to functional MRI applied to different neuropathological conditions. There is currently a particular focus on MR based imaging for diagnosis, prognosis- and treatment response assessment in patients with primary brain tumors (gliomas). A multi-centre study for evaluation of diagnostic efficacy of MR based perfusion imaging for diagnosis of gliomas is incorporated in the Norwegian Research Council (NRC) -financed project: Evaluation of functional Magnetic Resonance in the Diagnosis of Brain Tumors for Assessment of Clinical Efficacy (EMBRACE).

As part of the EMRACE project a new prospective study is currently being launched, which will assess the clinical utility of advanced MR based imaging methods for evaluation of treatment response in high grade gliomas patients.

The ANG is a multi-disciplinary effort and is collaborating closely with many other groups both internally within the OUH and externally with world-class research groups in Europe and the US. The group has also a close link to industry through collaboration/co-development with software companies (NordicNeuroLab, Bergen, Norway and CorTechs Labs, SanDiego, USA). The group has filed several patent applications related to novel image processing techniques which have been sublicensed to our industrial partners. The ANG group members are further involved in a large number of imaging studies ongoing in the Oslo-region.

In particular, the group provides MR expertise in several morphometric MR studies where high resolution MRI is used to assess neuro-structural changes related to neurodegenerative disease, Alzheimer’s disease and normal aging.
PhD 2009:

Kyrre Eeg-Emblem

Combined structural, microvascular and functional mapping of brain tumors for improved diagnosis and treatment planning

Master-thesis 2009:

Ingvar Andersen

Preoperative determination of macro-adenoma consistence- with focus on relaxometry

Tuva Hope

Sequence optimalization in MR-based diffusion tensor imaging

Other Master students:

Endre Grøvik
Anne-Lene Mathisen

PhD programs:

Cand. Med. Paulina Due-Tønnessen

Post Doc projects:

Kyrre Eeg Emblem
Inge Andre Rasmussen Jr.

Software engineer:

Raimo Aleksi Salo

MEDICAL ROBOTICS (Application and control)

Section Manager Ole Jakob Elle, PhD

Surgical robotics has been a research topic of The Intervention Centre since 1998. The Zeus Micro Joint telemanipulator has been used for animal studies performing coronary bypass-surgery and human trials for thoracoscopic IMA-takedown and sympatectomy. Through this work, spin-off research projects such as head-tracking as a control modality for a robotic scope-holder and haptic feedback to give the operator the feeling of touch when remotely controlling the robot has been initiated. Industrial and academic contact with Patric Finlay (Prosurgics Lmt., Medimation Lmt.) has been fruitful within the area of neurorobotic systems, and a cross-disciplinary research collaboration between engineers and neurosurgeons were established through this contact. The project was aimed at precise positioning of a tool within target points in the brain using image guidance and without the use of a stereotactic frame, by use of the neurosurgical PathFinder robot. This project is on hold due to software upgrade of the PathFinder robot as a result of our preliminary use of the system.

In 2005 the PhD fellow Edvard Nærum was hired with the research topic of haptic and tactile feedback in remote surgery. Edvard Nærum was in 2008 at a research stay at Seattle University, USA hosted by Professor Blake Hannaford. Two papers were published in 2009 based on work performed with Balke Hannaford, and two more publications based on the collaboration with Hannaford are in preparation. Hannaford is an important academic contact within the robotic research field. Edvard Nærum is now working with his last study, and is planning to complete his PhD in spring 2010.

The development of collision detection systems and visualization systems to help and guide the surgeon performing telemanipulated surgery was lead by the ARISER PhD-student, Tangui Morvan. He made a demonstrator of this system in 2007, which was evaluated through a user study in 2008 and published in 2009.
The Intervention Centre was partner in the Marie Curie project ARIS*ER, which was coordinated by The Intervention Centre. As a spin-off from ARIS*ER, the EU-Strep proposal SCath (Smart Catheterization) was granted in 2009 initiated by Katholieke Universitat Leuven. The Intervention Centre is partner in this project, where the aim is to develop a navigation platform and a robotic control system for safer and more precise positioning of catheter introduced devices.

Ole Jakob Elle holds a position at The Department of Informatics, University of Oslo as an Adjunct Associate Professor. In 2009 a four PhD-scolarship was decided to be dedicated to research work within robotic surgery at The Intervention Centre. The Candidate will start his work in spring 2010.

PhD programs:

1. M.Sc. Edvard Nærum
 Haptic and tactile feedback in remote surgery
 Mentor: Ole Jakob Elle and Erik Fosse,
 The Intervention Centre,
 Oslo University Hospital.

CARDIAC IMAGING

Professor Thor Edvardsen MD, PhD

The Intervention Centre has great facilities and support for research in different cardiac imaging modalities. The 3T MRI scanner at The Intervention Centre has augmented research efforts in cardiac imaging of structure and function of the heart. Several PhD students have ongoing projects that include cardiac MR. One project is exploring myocardial function in patients with NSTEMI (non ST-elevation myocardial infarct) after PCI treatment. Another project is studying patients with stable angina pectoris.

The development of epicardial accelerometers and ultrasound probes for continuous monitoring of myocardial ischemia has resulted in 3 papers in scientific journals during 2009 and several presentations at international conferences. The development of these devices has been in close collaboration with Dept of Cardiology. The idea behind the project is to improve pre and post operative monitoring of myocardial function.

One PhD project will describe myocardial function in sepsis. Myocardial function will be assessed by advanced monitoring including myocardial sensors and echocardiography. This project includes large animal models and studies in patients.

There is widespread clinical use of therapeutic hypothermia in comatose survivors of an out-of-hospital cardiac arrest. Hypothermia is demonstrated to improve outcome in these patients, but there is sparse knowledge of cardiac function during hypothermia. This PhD project will elucidate myocardial function in hypothermia.
PhD programs:

 Miniaturized epicardial ultrasound probes for perioperative myocardial monitoring
 Mentors: Thor Edvardsen, Dept of Cardiology, Oslo University Hospital. Erik Fosse, Intervention Centre, Oslo University Hospital. Halfdan Ihlen, Dept of Cardiology, Oslo University Hospital.

 Myocardial viability in patients with stable angina pectoris
 Mentor: Thor Edvardsen, Dept of Cardiology, Oslo University Hospital.

 Diagnostic and therapeutic stratification of patients with acute coronary syndrome (Echo-str-acs)
 Mentors: Helge Skulstad and Thor Edvardsen, Dept of Cardiology, Oslo University Hospital.

 Cardiomyopathy in sepsis
 Mentors: Thor Edvardsen, Dept of Cardiology, Oslo University Hospital. Erik Fosse, Intervention Centre, Oslo University Hospital. Erik W. Nilsen, IMMI, Oslo University Hospital.

5. Cand. Med. Stefan Hyler
 Myocardial function in graded ischemia assessed by myocardial sensors
 Mentors: Erik Fosse, The Intervention Centre, Oslo University Hospital. Helge Skulstad, Dept of Cardiology, Oslo University Hospital.

 Myocardial function in therapeutic hypothermia
 Mentors: Jan F. Bugge, Dept of Anesthesiology, Oslo University Hospital. Helge Skulstad and Thor Edvardsen, Dept of Cardiology, Oslo University Hospital.

NEURO COGNITIVE IMAGING
Associate Professor Tor Endestad

The fMRI group at the Center for Study of Human Cognition at UiO work with basic research related to cognitive functions. In 2009 a lot of the necessary piloting of projects and technical set up related to fMRI activities has been finalised.

The group is engaged in the study of memory and cognitive control. In one of the programs studies of early visual memory are combined with attention to better understand the building block of the human memory system. In addition memory errors (false memories) and the relationship between executive functions and impulse control are studied. Both patients with focal brain injuries and psychological disturbances are included in the research. In another line of projects studies of brain damaged patient address frontal lobe damage, hormone influence on cognitive functions.

Several projects with cooperation between the Centre and RH (FRONT, SOBER3, Cerebellum) were started in 2008 and continued in 2009. For all these projects data collection has been or are close to be finalized.

In addition to basic research, the group participate in the development of functional MRI as part of pre-surgical planning and improvement of neuropsychological diagnostics. In 2009 focus has been on memory encoding to provide data on temporal lobe function in Epilepsy patients.
Ongoing projects that continue in 2010:

PhD programs:

1. M.Sc. Markus Sneve
 Can the brain make sense of nothing, fill in of the Blind spot
 Principal Res: Tor Endestad, Svein Magnussen.

2. M.Sc. Markus Handal Sneve
 Plasticity in the human visual system
 Principal Res: Tor Endestad, Svein Magnussen.

3. M.Sc. Marianne Løvås, Ingrid Funderud
 FRONT Frontal Lobe Injury and Cognition
 Prinsipal Res: Tor Endestad, Anne Kristin Solbakk, Magnus Lindgren.

4. M.Sc. Torgeir Moberget
 Cerebellar damage and cognitive control
 Principal Res: Tor Endestad, Stein Anderson.

Post Doc projects:

1. Post Doc Johanna Lind
 Memory, genetics & brain imaging

2. Post Doc Thomas Espeseth, PhD Markus Sneve
 Parametric BOLD activation in multiple object tracking: Prediction of individual differences in attentional performance

Master students:

1. Master student Erik Normann Andersen
 Unconscious processing of emotions
 Principal Res: Tor Endestad, Bruno Laing.

2. Master student Haakon Engen
 Cognitive control, mood, brain function and genetics in major depressive disorder and healthy people
 Principal Res: Tor Endestad, Nils Inge Landrø.

3. Master student Nils Breivik
 SOBER Sex on brain European initiative
 Principal Res: Tor Endestad, Ira Haraldsen.

4. Master students Dag Alnes and Merethe Hauge
 Hippocampus and temporal lobe activation
 Principal Res: Tor Endestad.

5. Master student Trine Elverum
 Memory for trauma
 Principal Res: Tor Endestad.
Most minimally invasive procedures restrict the access and direct vision to the regions which require surgery. Such procedures require intra-operative image modalities such as ultrasound or endoscopic images to be able to monitor the surgery. In many cases this information is not sufficient to perform the procedure accurately and safely. Merging information acquired pre-operatively, mainly from for instance MRI, CT or PET, with intra-operative data can increase the basis for decisions and thereby improve the safety and accuracy of the procedure.

The image processing, visualization and navigation group develops cutting edge technological solutions which support minimally invasive procedures. As the title of the group indicates, the research focus is divided into three areas. Image processing methods are key elements in any software system which supports minimally invasive procedures.

In particular, we are focused on developing real-time image-segmentation and -registration methods where segmentation methods finds important anatomical structures such as tumors and vessel structures in images, while registration methods enables fusion of images. Visualization and navigation is required to present the medical images to the surgeon intra-operatively. We are developing visualization systems which use advanced techniques such as augmented reality and volume rendering for this purpose.

PhD programs:

1. M.Sc. Tangui Morvan (ARIS*ER Early stage researcher)
 Development of general purpose algorithms for collision detection using GPU (Graphics Processing Unit)
 Mentors: Eigil Samset, The Intervention Centre, Oslo University Hospital and Martin Reimers, Department of Informatics, University of Oslo.

2. M.Sc. Sergiy Milko (ARIS*ER Early stage researcher)
 Automatic registration of Ultrasound and CT/MRI images
 Mentors: Prof. Eigil Samset, The Intervention Centre, Oslo University Hospital and Timor Kadir, Siemens Magnet Technologies.

3. M.Sc. Egil Bae
 Image Segmentation and Reconstruction using level sets and graph cuts
 Mentors: Prof. XueCheng Tai, CIPR/UiB and Prof. Eigil Samset, The Intervention Centre, Oslo University Hospital.
ENDOBRONCHIAL PROCEDURES

Arve Sundset, MD

This program has become a national program for the interventional bronchoscopy and treatment of airway lesions, including patients with lung cancer obstructing airways, patients with benign airway stenosis, and patients with airway complications following lung transplantation. This program also includes of EBUS-TBNA (endobronchial ultrasound-guided trans bronchial needle aspiration), a novel method of mediastinal staging in lung cancer, and diagnostic fine needle aspiration of mediastinal disease.

PhD programs:

1. Cand Med Kirill Neyman
 Survival and quality of life following interventional bronchoscopy in patients with inoperable lung cancer

2. Cand Med Arve Sundset
 Airway perfusion in lung transplant recipients, and treatment of ischemic airway complications following lung transplantation

MINIMAL INVASIVE VASCULAR SURGERY

Kirsten Krohg-Sørensen MD, PhD

The development of minimally invasive vascular surgery has been executed by a multi-disciplinary group in the combined angio/surgery suite at the Centre. The program has been focused on endovascular treatment of thoracic and abdominal aneurysms using endovascular stenting.

The team led by Kirsten Krohg-Sørensen, has performed repair of thoracic and aortic stent grafts successfully. One PhD program related to this project is planned. Contacts are being established to expand this program to more complex aortic pathology, including aortic arch pathology.

PAEDIATRIC CARDIAC INTERVENTION

Erik Thaulow MD, PhD

Oslo University Hospital has been a prime mover in the Norwegian initiatives to decrease the invasiveness of repair of cardiac defects in children. It is well known that cardiac surgery in the young can contribute to psychological and developmental difficulties which are concern for families of such children. The uses of non-operative methods are desirable to replace surgery, especially those procedures that require heart lung machine and circulatory arrest. Using the combined operating suites and the multi-specialty approach of The Intervention Centre, repair of atrial septal defects has now become a non operative procedure for most Norwegian children. Similarly, some patients with VSD can also be treated in a similar fashion. The Intervention Centre is now embarking, as one of the first centers in the world on the non operative replacement of the pulmonic valve in a certain group of children. A comprehensive program of evaluation of short and long term outcomes in these patients as well as cost considerations for individuals and society are under planning. One PhD program is focusing on the patient experiences.

The cooperation between The Intervention Centre and the Pediatric Clinic is the basis for further progress in interventional therapy. This relates both to practical arrangements, technical skills in The Intervention Centre staff and also broader support in developing these strategies.
In 2007/2008, the operation room magnet was upgraded from an open magnet to a closed bore 3T MR for MR-guided neurosurgery. The Department of Neurosurgery performs the majority of its direct trans nasal, trans sphenoidal pure endoscopic pituitary surgeries in this 3T OR room. Furthermore, the activity has been extended to include brain tumor surgery. Since 2006, we have performed vascular neurosurgical procedures guided by angiography in our combined angiography-operation suite. The angio-suite was refurbished and fitted with state-of-the-art intraoperative angiography equipment from Siemens in 2007/2008, allowing rotational angiography with 3D representation intraoperatively. This will facilitate our work on vascular neurosurgery guided by angiography.

Main projects in cooperation with the advanced imaging group are:

- A study on predictive value of 3T MRI characteristics in determining pituitary tumor consistency and hence suitability for transsphenoidal resection of macro adenomas

- Establishing intraoperative tractography/DTI in the 3T MR
Scientific statistics
The Intervention Centre 2009

HUMAN PROCEDURES 1996 – 2009 \(n = 7437 \)

TEST ANIMALS 1996 – 2009 \(n = 796 \)

PER REVIEWED SCIENTIFIC PAPERS 1997 – 2009 \(n = 290 \)
Scientific statistics
The Intervention Centre 2009

PHD’S 2002 – 2009 n = 18

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

MASTER THESES 1998 – 2009 n = 54

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
INTERNAL HOSPITAL FUNDS ADMINISTRATED BY THE INTERVENTION CENTRE IN 2009

<table>
<thead>
<tr>
<th></th>
<th>BUDGET</th>
<th>EXPENDITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payroll expenses</td>
<td>13.394.000</td>
<td></td>
</tr>
<tr>
<td>Other operating expenses</td>
<td>6.274.000</td>
<td></td>
</tr>
<tr>
<td>Sum internal finance</td>
<td>19.668.000</td>
<td>20.031.000</td>
</tr>
</tbody>
</table>

EXTERNAL FUNDS ADMINISTERED BY THE INTERVENTION CENTRE IN 2009

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>INCOME</th>
<th>EXPENDITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Council of Norway</td>
<td>12.937.000</td>
<td></td>
</tr>
<tr>
<td>Regional Health Authority</td>
<td>1.993.287</td>
<td></td>
</tr>
<tr>
<td>European Commission</td>
<td>1.090.664</td>
<td></td>
</tr>
<tr>
<td>University of Oslo</td>
<td>398.000</td>
<td></td>
</tr>
<tr>
<td>National Heart and Lung Association</td>
<td>560.000</td>
<td></td>
</tr>
<tr>
<td>Ministry of Foreign Affairs</td>
<td>2.000.000</td>
<td></td>
</tr>
<tr>
<td>Norwegian Cancer Society</td>
<td>565.000</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>400.000</td>
<td></td>
</tr>
<tr>
<td>Research-, and pending expenditures</td>
<td></td>
<td>19.686.630</td>
</tr>
<tr>
<td>Overhead</td>
<td></td>
<td>257.321</td>
</tr>
<tr>
<td>Balance</td>
<td>19.943.951</td>
<td>19.943.951</td>
</tr>
</tbody>
</table>

DRG INCOME GENERATED AT THE INTERVENTION CENTRE IN 2009

(80% compensation = 28.102 NOK/DRG point)

<table>
<thead>
<tr>
<th>2009</th>
<th>N</th>
<th>CORR. WEIGHT</th>
<th>80% DRG VALUE</th>
<th>INCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart, Lung and Vascular Clinic</td>
<td>239</td>
<td>603,4</td>
<td>28102</td>
<td>19766946,8</td>
</tr>
<tr>
<td>Surgical Department</td>
<td>112</td>
<td>395,3</td>
<td>28102</td>
<td>11108720,6</td>
</tr>
<tr>
<td>ENT, Plastic & Gynaecology Surgery</td>
<td>16</td>
<td>52,3</td>
<td>28102</td>
<td>1469734,6</td>
</tr>
<tr>
<td>Women & Children Clinic</td>
<td>1</td>
<td>1,1</td>
<td>28102</td>
<td>30912,2</td>
</tr>
<tr>
<td>Orthopaedic Department</td>
<td>1</td>
<td>0,4</td>
<td>28102</td>
<td>11240,8</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
<td>130,6</td>
<td>28102</td>
<td>859921,4</td>
</tr>
<tr>
<td>All</td>
<td>379</td>
<td>1183,1</td>
<td>28102</td>
<td>33247476,4</td>
</tr>
</tbody>
</table>
Patents

The Intervention Centre 1998 – 2009

ACTIVE PATENTS (GRANTED)

<table>
<thead>
<tr>
<th>PATENT NR.</th>
<th>TITLE</th>
<th>INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1063923</td>
<td>Method and device for sutureless anastomosis</td>
<td>Sumit Roy, Erik Fosse</td>
</tr>
<tr>
<td>WO 0169130</td>
<td>Light system for use especially by operating theatre</td>
<td>Erik Fosse, Frode Lærum, Ole Jakob Elle</td>
</tr>
<tr>
<td>WO 0004386</td>
<td>Device for CO₂ detection</td>
<td>Tor Inge Tønnessen, Peyman Mirtaheri</td>
</tr>
<tr>
<td>WO 9211823</td>
<td>Filtering device for preventing embolism and/or distension of blood vessel walls</td>
<td>Frode Lærum</td>
</tr>
<tr>
<td>NO 20016385</td>
<td>System for monitoring changes in movements of an organ, preferably a heart muscle</td>
<td>Erik Fosse, Martin G. Gulbrandsen, Ole Jakob Elle</td>
</tr>
<tr>
<td>NO 20023605</td>
<td>Method and device for connecting two tubular organs</td>
<td>Erik Fosse, Ole Jakob Elle, Sumit Roy</td>
</tr>
<tr>
<td>US PCT/EP2008/058437</td>
<td>Method and kit for sweat activity measurement</td>
<td>Ørjan Grøttem Martinsen, Sverre Grimnes</td>
</tr>
</tbody>
</table>

PENDING PATENTS

<table>
<thead>
<tr>
<th>PATENT</th>
<th>TITLE</th>
<th>INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US PCT patent application: 2007</td>
<td>Method and apparatus for visualization of a flexible body</td>
<td>Eigil Samset</td>
</tr>
<tr>
<td>US Patent: 20030114876</td>
<td>Device for use by brain operations</td>
<td>Eigil Samset, Henry Hirschberg, Åge Kristiansen</td>
</tr>
<tr>
<td>IPCS 8 class: AA61 1B603FI; USPC class: 600425</td>
<td>Tumor grading from blood volume maps</td>
<td>Kyrre Emblem, Atle Bjørnerud</td>
</tr>
<tr>
<td>EP1632201 Implant. 5/10 2004</td>
<td>Implant</td>
<td>Bjørn Edwin, Erik Fosse</td>
</tr>
<tr>
<td>WO2009027522A1</td>
<td>Automated monitoring of myocardial function by ultrasonic transducers positioned on the heart</td>
<td>Ole Jakob Elle, Erik Fosse, Halfdan Ihlen, Andreas Espinoza, Lars Hoff</td>
</tr>
<tr>
<td>WO03061473A1</td>
<td>Use of sensor and system for monitoring heart movements</td>
<td>Ole Jacob Elle, Erik Fosse, Martin G. Gulbrandsen</td>
</tr>
<tr>
<td>US20080281214A1</td>
<td>Method for estimating cardiac pumping capacity</td>
<td>Ole Jakob Elle, Erik Fosse, Steinar Halvorsen</td>
</tr>
<tr>
<td>PCT/EP2009/055570. 8/5 2008</td>
<td>Vessel segmentation in DCE MR imaging</td>
<td>Atle Bjørnerud, Kyrre Emblem</td>
</tr>
<tr>
<td>Priority date: 3 April 2009 EPO filing number: 09157255.2</td>
<td>Computer aided diagnosis tools for longitudinal tumor monitoring</td>
<td>Atle Bjørnerud, Kyrre Emblem</td>
</tr>
<tr>
<td>Priority date: 27 May 2009 EPO filing number: 2009 2068</td>
<td>Method of identifying activated brain regions for a single subject</td>
<td>Glenn Lawyer, Atle Bjørnerud</td>
</tr>
</tbody>
</table>
Academic partners 2009

NATIONAL ACADEMIC PARTNERS

Centre of Mathematics for Applications, Faculty of Mathematics and Natural Sciences, University of Oslo
Prof. Knut Marken
Mathematical methods supporting minimally invasive therapy in medicine.

Centre for Micro technology, Vestfold University College, Horten
Assoc. Prof. Henrik Jacobsen
Micro-heart.

Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU), Trondheim
Bård Kjos, Prof. Richard Blake, Prof. Hery Ramampiaro
Image processing, data graphics, medical journal indexing and search engines. MSc student supervision.

Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim
Prof. Ilangko Balasingham, Prof. Tor Ramstad, Prof. Andrew Perkis, Prof. Geir Øien
Signal processing algorithms, wireless sensor network, multimedia patient record systems. Supervision of several MSc and PhD students.

Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim
Associate professor Øyvind Stavdal
Robotic technique and ultrasound.

Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo
Prof. Morten Dæhlen
MELODY project.

Institute of Psychiatry, UiO
Prof. Ole Andreassen
Neuroplasticity in patients with bipolar disorders.

St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Trondheim
Assoc prof. Asta Håberg
New statistical methods for improved characterization of gliomas.

St. Olavs Hospital, Norwegian University of Science and Technology (NTNU), Trondheim
Prof. Hans Olav Myhre, Prof. Ronald Mårvik
"Fremtidens operasjonsrom."

The School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo
Prof. Jan Karlsen
Development of a radioactive gel for treatment of bowel tumours.

University Hospital Stavanger
Kathinka Kurz
Characterization of breast tumors using MR mammography.
INTERNATIONAL ACADEMIC PARTNERS

Department of Anaesthesiology, Massachusetts Medical Center, Boston, USA
Contact person: Prof. Babs Soller
Collaboration in the SAMPOS project on optical pH-sensor.

Department of Radiology, Brigham and Women’s Hospital, Harvard University, Boston, USA
Contact person: Prof. Ferenc Jolesz
Non-rigid image registration. Perfusion mapping of tumours.

EURECOM, Sophia-Antipolis, France
Contact person: Prof. Raymond Knopp
MELODY project.

Fakultini Nemocine u sv. Anny Brne, Czech Republic
Contact person: Dr. Thomas Kara
IIIOS.

Graz University of Technology, Institute of Biomechanics, Center of Biomedical Engineering, Graz, Austria
Contact person: Prof. Gerard Holzapfel, Dr. David M. Pierce
SCath.

Göteborgs Universitet, Instuition för klinische vetenskaper, Sweden
Contact person: Prof. Peter Thomsen, MD PhD
Ostomy device.

Imperial College London, UK
Contact person: Professor Guang-Zhong Yang
SCath.

Linköping University, Sweden
Contact person: Prof. Erik G Larsson
MELODY project.

National Institute of ICT, Yokosuka, Japan
Contact person: Prof. Huan-Bang Li
MELODY project.

Royal Institute of Technology, Stockholm, Sweden
Contact person: Prof. Mikael Skoglund
MELODY project

Sahlgrenska University Hospital, The ColoRectal Unit, Gothenburg, Sweden
Contact person: Prof. Leif Hultén MD PhD
Ostomy device.

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland & Department of Electrical Engineering, University of California, Berkeley, USA
Contact person: Prof. Martin Vetterli
Collaboration in the SAMPOS and WISENET projects on signal processing in sensor nodes.

School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
Contact person: Prof. Erik Larsson
Collaboration in the SAMPOS project on wireless sensor networks.

Technical University of Delft, The Netherlands
Contact person: Prof. Jenny Dankelman
IIIOS.

The Katholieke Universiteit Leuven, Belgium
Contact person: Professor Jos Vander Sloten, Mauro Sette
SCath project.

University of British Columbia, Vancouver, Canada
Contact person: Prof. Victor Leung
MELODY project.

University of California San Diego, USA
Contact person: Prof Anders Dale
Novel methods for quantification of tumor growth.

University of California Santa Barbara, USA
Contact person: Prof. Ken Rose
MELODY project.

University of Dundee, UK
Contact person: Professor Andreas Melzer, Professor Sir Alfred Cushieri
IIIOS.

University of Heidelberg, Germany
Contact person: Frank Zoellner
Novel statistical methods for predictive modeling of tumor grade.

University of Homburg SAAR, Germany
Contact person: Professor Arno Bucker
IIIOS.

University of Lübeck, Germany
Contact person: Professor Hartmut Gehring
IIIOS.

Universitat Politecnica de Madrid, Spain
Contact person: Prof. Enrique J. Gomez
SCath

Uppsala University, Sweden
Contact person: Prof. Anders Rydberg
MELODY project.

Uppsala University, Sweden
Contact person: Prof Håkan Ahlström
MR based Quantitative perfusion analysis.

Zürcher Hochschule für Angewandte Wissenschaften, Switzerland
Contact person: Professor Hans Wernher van de Venn
SCath.
Commercial partners

ABB Corporate Research, Oslo, Norway
Contact person: Dagfin Brodtkorb
Collaboration in the SAMPOS and WISENET projects on robust wireless communications.

Acro AB, Göteborg, Sweden
Contact person: Dr. Michael Salter
Collaboration in the BWSN project.

ADIGO, Oppegård, Norway
Contact person: Øyvind Overskeid
Collaboration on devices for laparoscopic surgery.

Alertis Medical AS, Oslo, Norway
Contact person: CEO Martin Krekling
Development of a pCO₂ sensor.

Five PhD programs.

Angiocam GmbH, Duisburg, Germany
Contact person: Ingo Krisch
SCath.

Cancer Cure as, Oslo, Norway
Gunnar Myhr, CEO
Collaboration for development of a system for targeted drug delivery under MR guidance. Other partners: Institute for Cancer research.

CorTechs Labs, San Diego, USA
Novel methods for quantification of tumor growth.

Endosense SA, Geneva, Switzerland
Contact person: Giovanni Leo
SCath.

Ericsson AB, Göteborg, Sweden
Contact person: Dr. Arne Alping & Dr. Thomas Lewin
Collaboration in the BWSN project.

Exit Business Support Centre, Banja Luka, Bosnia
Contact persons: Zoran Gajic
Improving governance and interethnic cooperation in BiH through eHealth.

GE Healthcare, Stockholm, Sweden
Contact person: Dr. Bengt Nielsen
IIOS.

GE Vingmed-Sound, Horten, Norway
Contact person: Gunnar Hansen
Development of ultra sound equipment for cardiology.

Healthy Pointers, Oslo, Norway
Contact person: Stian Aldrin
Pointing device for laparoscopic surgery.

Hospitality AS, Oslo, Norway
Contact person: Mr. Flemming Bo Hegerstrøm
MELODY project.

IBM Healthcare, Kolbotn, Norway
Contact person: Mr. Jan Fredrik Sagdahl & Frode Tveit
MELODY project.

Imego AB, Göteborg, Sweden
Contact person: Dr. Peter Bjökholm
Collaboration in the BWSN project.

Kongsberg SIM, Kongsberg, Norway
Contact person: Øyvind Rideng
Systems in Motion provides the project with a 3D graphics library. Their responsibility in the project is parallelized 3D rendering.

Lifecare AS, Bergen, Norway
Contact person: Dr. Erik Johannessen
MELODY project.

Memscape AS, Horten, Norway
Contact person: Andre Larsen
Collaboration in the BWSN and WIREMED projects on MEMS based pressure sensors.

Millicore AB, Norrköping, Sweden
Contact person: Mikael Löfgren
Collaboration in the BWSN project.

MR:Comp, Gelsenkirchen, Germany
Contact person: Gregor Schaefer
IIOS.

Multihopp Communications, Oslo, Norway
Contact person: Niels Aakvaag
Collaboration in the WISENET project on robust wireless communications.

NordicNeuroLab AS, Bergen, Norway
Development of comprehensive software package for advanced functional image analysis.

Norwegian Computing Center, Oslo, Norway
Contact person: Dr. Wolfgang Leister
Collaboration in the SAMPOS project on security and authentication platform in wireless sensor systems.

Norwegian Defense Research Establishment (FFI)
Prof. Torleiv Maseng & Prof. Svein Erik Hamran
MELODY project.

Novelda AS, Oslo, Norway
Contact person: Eirik Næs-Ulseth
Collaboration in the BWSN, WIREMED, and Medical Radar projects on ultra wide band impulse radio platform for medical communications and remote sensor.

Novosense AB, Lund, Sweden
Contact person: Karl-Johan Ohman
Collaboration in the BWSN project.

OstomyCure, Oslo, Norway
Contact person: Karl-Johan Ohman
Collaboration in the BWSN project.

Phillips Medical Systems, Oslo, Norway
Contact person: Martin Johansson
Development of medical implants.

Prosurgics Ltd, High Wycombe, United Kingdom
Contact person: Patrick Finley
Neurosurgical robot PathFinder.
Sectra AB, Linköping, Sweden
Integration of in-house developed software into hospital PACS.

Siemens Medical Imaging, Erlangen, Germany
Contact person: Lutz Bluhm
Integration of the Zeeo angiographic system in the OR.

SimSurgery AS, Oslo, Norway
Contact person: M.D. Vidar Sørhus
Surgical simulator.

SINTEF Health, Trondheim, Norway
Contact person: Prof. Torill Nagelhus Hørnes
IIIOS.

SINTEF ICT, Oslo, Norway
Contact person: Dag Ausen
Collaboration in the WIREMED project on MEMS technology for implantable pressure sensors.

SINTEF ICT, Trondheim, Norway
Contact person: Knut Grythe
Collaboration in the SAMPOS project on QoS metric in wireless sensor network.

SORIN Group, France
Contact person: Dr. Renzo Dal Molin
MELODY project.

VTT Information Technology, Helsinki, Finland
Contact person: Marku Jennu
Collaboration in the BWSN project.
Publications

Scientific publications

Level 2

Level 1

15. Emblem KE, Bjørnerud A.
An Automatic Procedure for Normalization of Cerebral Blood Volume Maps in Dynamic Susceptibility Contrast-Based Glioma Imaging.

Detection of myocardial ischaemia by epicardial accelerometers in the pig.

17. Hellesø R, Sorensen L, Slaughter L.
Personal health notes: lessons learned.

18. Jianguo D, Balasingham I, Bouvry P.
Management challenges for emerging networks and services.

19. Jianguo D, Balasingham I, Bouvry P.
Management of Overlay Networks: A Survey.

Impedance-based tissue discrimination for needle guidance.

22. Khaleghi A, Kamyab M.
Reconfigurable Single Port Antenna With Circular Polarization Diversity.

23. Khaleghi A, Balasingham I.
Non-line-of-sight on-body ultra wideband (1-6 GHz) channel characterisation using different antenna polarisations.

24. Khaleghi A, Balasingham I.
On the Ultra Wideband Propagation Channel Characterizations of the Biomedical Implants.

25. Khaleghi A, Balasingham I.
On human body ultra wideband channel characterizations for different wave polarizations.

26. Khaleghi A.
Time-Domain Measurement of Antenna Efficiency in Reverberation Chamber.

27. Khaleghi A, Balasingham I.
Improving In-Body Ultra Wideband Communication Using Near-Field Coupling of the Implanted Antenna.

Increased Theta and Alpha EEG Activity During Nondirective Meditation.

29. Larsson HBW, Courivaud F, Rostrup E, Hansen AE.

30. Leister W, Fretland T, Balasingham I.

31. Lowrie C, Desmulliez MPY, Hoff L, Elle OJ, Fosse E.
MEMS three-axis accelerometer: Design, fabrication and application of measuring heart wall motion.

32. Lowrie C, Desmulliez MPY, Hoff L, Elle OJ, Fosse E.
Fabrication of a MEMS accelerometer to detect heart bypass surgery complications.

PubMed-uncategorized

2008

Level 2

Level 1

43. Frich L. Local ablation of colorectal liver metastasis - a systematic review. Tidsskr Nor Laegeforen. 2008 Jan 3; 128(1): 54-56.
2007

Level 2

Impact of endoscopic ultrasonography (EUS) on surgical decision-making in upper gastrointestinal tract cancer: An international multicenter study.

Quality of life after randomization to laparoscopic versus open living donor nephrectomy: Long-term follow-up.

Level 1

Surgeon centered framework towards analysing the surgical workflow.

4. Risholm P, Narum E, Elle OJ.
An inexpensive and portable system for improving EM tracking accuracy.

5. Shulutko AM, Kazaryan AM, Agadzhanov VG.
Mini-laparotomy cholecystectomy: Technique, outcomes: A prospective study.

6. Hoge W, Scott and Chu, Renxin and Jolesz, Ferenc and Samset E.
Fast Regularized Parallel Imaging in an (MR) Image-Guided Therapy Application.

Device connectivity for image-guided medical applications

Multi-Modal Event Streams for Virtual Reality.

9. Samset E, DiMaio S
Hybrid Tracking: A new trend in Image-Guided Therapy.

Dynamic MRI scan plane control for passive tracking of instruments and devices.

Technology Developments Applied to Healthcare/Nursing.

A dynamic and extensible workflow-oriented software framework for image-guided therapy.

13. Hansen G, Sundset A.
Endobronchial treatment of central airway obstruction.

14. Solberg LE, Balasingham I.
On the Swept-threshold sampling in UWB medical radar.

2006

Level 2

Level 1

19. Mala T.
Cryoablation of liver tumours - a review of mechanisms, techniques and clinical outcome.

20. Frich L, Mala T, Gladhaug I.
Hepatic radiofrequency ablation using perfusion electrodes in a pig model: Effect of the Pringle manoeuvre.

21. Samset E.
Temperature mapping of thermal ablation using MRI.
MITAT Min Invas Ther & Allied technol 2006; 15: 36-41.

22. Fosse E.
Thermal ablation of benign and malignant tumors.

Clinical and Radiologic Outcome of Off-Pump Coronary Surgery at 12 Months Follow-Up: A Prospective Randomized Trial.

Etablering av moderne hjertekirurgi i Bosnia.
Tidsskr Nor Lægeforen 2006; 126: 1782-5.

2005

Level 2

Laparoscopic versus open living-donor nephrectomy: Experiences from a prospective, randomized, single-center study focusing on donor safety.

2. Oyri K, Murray Pj.
Osni.info – Using free/libre/open source software to build a virtual international community for open source nursing informatics.

Preoperative cerebral ischemic lesions predict physical health status after on-pump coronary artery bypass surgery.

Cerebral microembolization during off-pump coronary artery bypass surgery with the Symmetry aortic connector device.

Gastric perforation after percutaneous radio-frequency ablation of a colorectal liver metastasis in a patient with adhesions in the peritoneal cavity.

Level 1

Impact of intraoperative MRI on the surgical results for high-grade gliomas.
Minim Invasive Neurosurg 2005; 48: 77-84.

7. Mala T, Edwin B.
Role of limitations of laparoscopic liver resection of colorectal metastases.

Uterine fibroid embolization can still be improved: Observations on post-procedure magnetic resonance imaging.

2004

Level 2

Level 1

2003

Level 2

Level 1

2002

Level 2

Level 1

2001

Level 2

Level 1

11. Hansen G.
Laser eradication of bronchial carcinoids – when is therapeutic bronchoscopy the right option?

12. Hol PK, Fosse E, Mørk BE, Lundblad R.
Graft control by transit time flow measurement and intraoperative angiography in coronary artery bypass surgery.

13. Kazaryan A, Mala T, Edwin B.
Does tumour size influence the outcome of laparoscopic adrenalectomy?

Ventricular fibrillation during off-pump coronary bypass grafting: Transcranial Doppler and clinical findings.
Cerebrovasc Dis 2001: 139-41.

15. Lærum F.
Demand for a new main speciality in image-guided therapy.

MRI estimated 3D temperature distribution in liver cryolesions: A study of cryolesion characteristics assumed necessary for ablation.
Cryobiology 2001; 43: 268-75.

Magnetic-resonance-guided percutaneous cryoablation of hepatic tumours.

Temperature measurement in soft tissue using a distributed fiber bragg grating sensor system.
Minimally Invasive Therapy and Allied Technologies 2001; 10: 89-93.

Kryoablation – aktuell behandling av inoperable leversvulster?
Tidsskr Nor Lægeforen 2001; 121: 2510-5.

20. Mala T, Bergan AB, Edwin B, Gladhaug I, Mathisen Ø.
Leverreseksjon – indikasjoner og resultat.
Tidsskr Nor Lægeforen 2001; 121: 2476-80.

2000

Level 2

MRI-guided celiac plexus block.

2. Klaastad Ø, Lilleås FG, Røtnes JS, Breivik H, Fosse E.
A magnetic resonance imaging study of modifications to the infracavicular brachial plexus block.

Gut perforation caused by biliary endoprosthesis.

Level 1

4. Arafä OE, Geiran OR, Andersen K, Fosse E, Simonsen S, Svennevig JL.
Intraaortic balloon pumping for predominantly right ventricular failure after heart transplantation.

5. Fosse E, Hol PK, Samset E, Røtnes JS, Bjørnstad P, Lundblad R.
Integrating image-guidance into the cardiac operating room.

Viral safety of solvent/detergent-treated plasma.
Transfusion 2000: 84-90.

7. Smedby Ø, Rostad H, Klaastad Ø, Lilleås F, Tillung T, Fosse E.
Functional imaging of the thoracic outlet syndrome in an open MR scanner.

Real time MRI-guided excision and cryo-treatment of osteoid osteoma in os ischii – a case report.

Plasma endotoxin concentration during cardiac surgery may be related to atherosclerosis.

1999

Level 2

Level 1

1998

Level 2

Level 1

1997

Level 2

Level 1

Publications
Editorials, chronicles and commentaries

2009

1. Fosse E.
 New technologies for the treatment of structural heart disease.

2. Jacob Bergsland: Schachner et al.
 Training Surgeons to Perform Robotically Assisted TECAB.

2008

1. Bergsland J.
 Minimalt invasiv behandling av strukturell kardio- vaskulær sykdom.
 Kirurgen, 2008; 3: 50-3.

2007

1. Hol, PK.
 Ablative therapy of liver tumors.
 Acta Radiologica 2007; 48: 5, 473.

2006

1. Fosse E.
 Thermal ablation of benign and malignant tumours.

2004

1. Mala T.
 Extensive freezing necessary to ensure liver tumor ablation.

 Håndsvette og ansiktsrødming.
 Tidsskr Nor Lægeforen 2003; 123: 442.

2003

1. Fosse E.
 Legekunst og ISO standard.
 Tidsskr Nor Lægeforen 2003; 123: 1733.

2. Fosse E.
 Anastomotic Devices.

2000

1. Fosse E.
 Landsbyuniversiteter.
 Tidsskr Nor Lægeforen 2000; 22: 120.

2. Fosse E.
 Høyteknologi i medisinen.
 Tidsskr Nor Lægeforen 2000; 17: 2056-2057.

3. Bjørnstad PG.
 Transcatheter closure of atrial septal defects demands co-operation between the interventionist and the echocardiographer.
 Cardiology in the Young, 2000; 10: 462-3.

1999

1. Fosse E.
 Invited commentary to “Heparin-Coated circuits for High-Risk patients: A Multicenter, prospective, randomized trial.”
Publications

Books and book chapters

2009

2007

2006

2003

2002

2001

8. Fosse E, Hol PK, Røtnes JS.
 Where are we going? The operating room in the new millennium.

2000

1. Aanestad M.
 Work practice and technology:
 Investigating the dynamics of technical agency.

2. Øyri K, Helland Ø.
 Lessons learned from a Hospital Intranet Project.

3. Samset E, Kristiansen A, Hirschberg H.
 A frame and marker-less stereotactic system in the intra-operative MRI.

4. Johansen M, Hanseth O.
 Implementing open network technologies in complex work practices: A case for telemedicine.

5. Elle OJ, Samset E, Bakken A, Hugsetveit JO, Fosse E.
 Head-tracking in scopic surgical procedures using Robot-held camera and head-mounted stereoscopic display.

6. Fosse E. Commentary to Calafiore AM, Vitolla G.
 Minimally Invasive direct coronary artery bypass.

1999

 Experience with telesurgery and radiology via an ATM network.

1998

1. Røtnes JS, Buanes T, Edwin B, Samset E, Fosse E.
 Implementation of a wide bandwidth network (ATM) for real-time transmission of several video sources in image guided therapy.
Publications
PhD theses

2009

1. Emblem K.
Combined structural, microvascular and functional mapping of brain tumors for improved diagnosis and treatment planning.

2. Mørk BE.
The Interventional Centre, Oslo University Hospital, Rikshospitalet Faculty of Medicine, Department of Leadership and Organizational Management BI Oslo, Institute of Health Management and Health Economics, University of Oslo 2009. ISBN: 978-82-8072-343-7.

3. Liang X.

2008

1. Andersen MH.
Patient-reported outcomes following living donor nephrectomy.

2007

1. Hol PK.
Integrating Coronary Angiography into the Cardiac Operating Room.

2. Frich L.
Radiofrequency ablation of liver tumors. An experimental and clinical study.

2006

1. Skulstad H.
New insights into the function of normal and ischemic myocardium.
Oslo: Dept of Cardiology/Institute Surgical research/ The Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. ISBN: 82-8072-847-3.

2. Lund C.
Neurological consequences of coronary surgery with or without cardiopulmonary bypass.
Oslo: Dept of Neurology/The Interventional Centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2006. ISBN: 82-8072-662-4.

2005

1. Edwin B.
Advanced laparoscopy – from the research and development department to day care surgery.

2. Mirtaheri P.
A novel biomedical sensor for early detection of organ ischemia.

3. Bjørnstad P.
Catheter-based treatment for persistently patent arterial ducts and for atrial septal defects in the oval fossa.
Oslo: Dept Paediatrics, The Interventional centre, Rikshospitalet, Faculty of Medicine, University of Oslo, 2005. ISBN 82-8072-149-5.
Publications

MSc theses

2004

1. **Reimers M.**
 Mathematical methods for 3D visualization of organ geometry in image guided surgery and simulation.

2. **Kvarstein G.**
 Tissue PCO2 for early detection of organ ischemia.

3. **Elle O J.**
 Sensor Control in Robotic surgery.

4. **Kloaastad Ø.**
 Evaluations of brachial plexus block methods by magnetic resonance imaging and development of a novel method.

5. **Mala T.**
 Cryoablation of liver tumours. Monitoring, techniques and tumour effects.

2009

1. **Gutierrez Perera, CS.**
 Multiple Sensor Data Analysis, Fusion, and Communication for ULTRASPOENDER.
 NTNU, 2009.

2. **Andersen, I.**
 Preoperative determination of macro-adenoma consistence with focus on relaxometry.
 2009. Department of Medical Physics, University of Oslo.

3. **Hope, T.**
 Sequence optimization in MR-based diffusion tensor imaging.
 2009. Department of Medical Physics, University of Oslo.

2003

1. **Samset E.**
 MRI-guided interventions. Technological solutions.

2002

1. **Aanestad M.**
 Cultivating Networks: Implementing surgical telemedicine.

2008

1. **Stallemo K.**
 Patient friendly presentation of electronic patient record.
 NTNU, 2008.

2. **Wendt K.**
 Humanitarian aid and sustainable development.
 Oslo, Diakonhjemmet University College.

2007

1. **Asphjell ØK.**
 Biomedisinske sensornettverk basert på Ultra Wideband impulsradio og IEEE 802.15.4/Zigbee.

2. **Vo LT.**
 An optimized cross-layer protocol for patient confined wireless network.

3. **Lande H.**
 UWB-IR for biomedisinske sensornettverk.

4. **Ødegaard K.**
 Deteksjon av myokard iskemi i biomedisinske signaller ved bruk av treakset akselerometer.
5. **Hansen M.**
Deteksjon av myokard iskemi i biomedisinske signaler ved bruk av treakset akselerometer.

2006

1. **Blomander C.**
Are leaders conductors or marionettes?
Oslo, Diakonhjemmet University College 2006.

2. **Skogholt M.**
ZigBee for Medical biosensor Network.
Trondheim: NTNU, IET 2006.

3. **Støa S.**
Sensornettverk for medisinsk behandling.
Trondheim: NTNU, IET 2006.

4. **Ivanova E.**
Automatic adaption of information in Electronic Patient Records.
Trondheim: NTNU, IDI 2006.

5. **Birkedal G.**
Navigated 3D X-ray.

2005

1. **Roe B.**
Multi-modal image registration of spinal images.

2. **Lyche Melvær E.**
Real-time volume visualization supporting medical interventions.
Oslo: UiO, IFI.

3. **Øyen Larsen S.**
Segmentation of frozen region in MR images, exploiting phase information to improve thermometry.

4. **Opsjøn S.**
Tracking of surfaces-matched with CT/MR.

5. **Fluør TØ.**
Volume interaction.

6. **Bruvoll P.**
Exploiting phase information in MR.

7. **Jonas Helgemo J.**
Programming haptic in medical applications.

8. **Martinsen M.**
An auxillary 3D visualization system for Robot Aided Surgery.

9. **deVibe F.**
Development of a roaming real-time patient monitor.

10. **Emblem K.**
Cerebral MRI perfusion measurement.

11. **Sørlie RP.**
Automatic segmentation of liver tumors from MRI images.

12. **Smaastuen M.**
Segmentation of US images of liver tumors applying snake algorithm and GVF.

13. **Karlsen JS.**
Augmented Reality for MR-guided Surgery.

2004

1. **Heggen Støa I.**
Visualisation of robot collision.

2. **Joyce PM, Johannessen S.**
Model based segmentation, applications to CT and MR images of the liver.

3. **Aune M.**
Dynamics of the spine.

4. **Stepaniak M.**
Instability in the cervical columna.

5. **Risholm P.**
Deformable registration in an intra-operative setting.

6. **Nærum E.**
Heart beat synchronization for the establishment of a virtual surgical reality.
2003

1. **Bengtson D.**
 Augmented reality for safer coronary artery bypass.

2. **Gjesteland E. Sæter M.**
 Configurable 3D GUI for Computer Assisted Surgery.

3. **Selander J.**
 Post-Processing of Segmented Volumetric Datasets.

4. **Gleditsch K.**
 Interactive Manipulation of Three-Dimensional Images.

5. **Rotevatn K.**
 Functional MRI of the Myocardium.

6. **Pedersen E.**
 Deformable Contours for Segmentation of Medical Data.

7. **Rødemyr L.**
 Robotic Heart Surgery: Stereo Image Processing for Cancelling Heart Movement to Establish a Virtual Surgical Reality.

8. **Øsebak G.**
 Robotic Heart Surgery: Sensor Fusion for Cancelling Heart Movement to Establish a Virtual Surgical Reality.

9. **Kjørstad R.**
 Spinal dynamics.

10. **Heuch H.**
 Segmentation of the Liver from MR and CT images.

11. **Bærheim L.**
 Mechanism and control of CO2-accumulation in ischemic organs.

12. **Kravdal Gjessing I.**
 Using distance transformations to evaluate different techniques for brachial plexus blocks.

13. **Vagle PM.**
 Fusing medical images and 3D visualisation.

14. **Tysseng J.**
 Viewpoint adapted projection in a distributed system for image-guided surgery.

15. **Handegard Ø.**
 Computer aided minimal-invasive surgery using tracking systems.

16. **Lærum LT.**
 Visualisation of the alar ligament: Reliability of image analysis from two MRU units.

2002

1. **Myrold Eriksen E.**
 An MRI compatible pneumatic power injector used in signal enhancedment studies.

2. **Omholt-Jensen T.**
 Segmentation of the Hepatic Vessels as seen in MR or CT Images.

2001

1. **Øyri K.**
 Quantitative measurement of nursing outcome after aortocoronar bypass surgery – a pilot study.
 Institute of Nursing Science, Faculty of Medicine, University of Oslo. 2001.

1998

1. **Harloff E.**
 Reliability of measuring lumbar size in neutral, flexion and extension in a vertical open MR unit.
<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director, Professor</td>
<td>Karl-Erik Giercksky</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Otto A. Smiseth</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, PhD, MD</td>
<td>Trine Sand-Kaastad</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Sigbjørn Smeland</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Thomas Åbyholm</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Geir Ketil Røste</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director</td>
<td>Øyvind Skraastad</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Jarl Å. Jakobsen</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Frode Vartdal</td>
<td>Faculty of Medicine, University of Oslo</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Erlend Smeland</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Kristian Bjøro</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Terje Rootwelt</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director, Professor</td>
<td>Ansgar O. Aasen</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Olav Haraldseth</td>
<td>Faculty of Medicine, NTNU Trondheim</td>
</tr>
<tr>
<td>Professor</td>
<td>Richard Blake</td>
<td>Faculty of Inf., Mathem. and Electr., NTNU, Trondheim</td>
</tr>
<tr>
<td>Professor</td>
<td>Hans Olav Myhre</td>
<td>St. Olavs Hospital, Trondheim</td>
</tr>
<tr>
<td>Ass. Professor</td>
<td>Martin Biermann</td>
<td>University of Bergen</td>
</tr>
<tr>
<td>Professor</td>
<td>Torfinn Taxt</td>
<td>University of Bergen</td>
</tr>
<tr>
<td>Professor</td>
<td>Ulf Kongsgaard</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Petter Eldevik</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Kirsti Ytrehus</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Steinar Pedersen</td>
<td>Tromsø University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Arne Bakka</td>
<td>University Hospital of Akershus</td>
</tr>
<tr>
<td>Professor</td>
<td>Per Hj. Nakstad</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Professor</td>
<td>Nils-Einar Kløw</td>
<td>Oslo University Hospital</td>
</tr>
<tr>
<td>Director</td>
<td>Berit Mørland</td>
<td>The Norwegian Health Services Research Centre</td>
</tr>
<tr>
<td>Dr. Philos</td>
<td>Bjørn Anton Graff</td>
<td>The Norwegian Health Services Research Centre</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Barbra Noodt</td>
<td>Directorate for Health and Social Affairs</td>
</tr>
</tbody>
</table>
www.ivs.no
THE INTERVENTION CENTRE

Oslo University Hospital and Faculty of Clinical Medicine, University of Oslo